Temperature dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials

[1]  Jingsong Wei,et al.  Laser pulse induced bumps in chalcogenide phase change films , 2008 .

[2]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[3]  Matthias Wuttig,et al.  Origin of the optical contrast in phase-change materials. , 2007, Physical review letters.

[4]  Y. K. Kim,et al.  Changes in the electronic structures and optical band gap of Ge2Sb2Te5 and N-doped Ge2Sb2Te5 during phase transition , 2007 .

[5]  I. Karpov,et al.  Nucleation switching in phase change memory , 2007 .

[6]  Matthias Wuttig,et al.  Phase change materials: From material science to novel storage devices , 2007 .

[7]  S. G. Bishop,et al.  Thermal conductivity of phase-change material Ge2Sb2Te5 , 2006 .

[8]  S. Ziegler,et al.  Nucleation of AgInSbTe films employed in phase-change media , 2006 .

[9]  Stefan Blügel,et al.  Unravelling the interplay of local structure and physical properties in phase-change materials , 2006 .

[10]  C. Wright,et al.  Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes , 2006, IEEE Transactions on Nanotechnology.

[11]  Matthias Wuttig,et al.  Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording , 2005 .

[12]  K B Blyuss,et al.  Master-equation approach to the study of phase-change processes in data storage media. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Femtosecond laser pulse irradiation of Sb-rich AgInSbTe films: Scanning electron microscopy and atomic force microscopy investigations , 2005 .

[14]  G. Fuxi,et al.  High-Density Read-Only Memory Disc with Ag 11 In 12 Sb 51 Te 26 Super-Resolution Mask Layer , 2004 .

[15]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[16]  F. Gan,et al.  Femtosecond laser-induced crystallization in amorphous Sb-rich AgInSbTe films , 2004 .

[17]  M. Wuttig,et al.  Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys , 2004 .

[18]  Takashi Nakano,et al.  Ferroelectric catastrophe: beyond nanometre-scale optical resolution , 2004 .

[19]  C. Wright,et al.  Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices , 2004 .

[20]  Jingsong Wei,et al.  Theoretical explanation of different crystallization processes between as-deposited and melt-quenched amorphous Ge2Sb2Te5 thin films , 2003 .

[21]  In-Sik Park,et al.  Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers , 2003 .

[22]  Optical properties and crystallization of AgInTeSbGe phase-change optical disk media , 2003 .

[23]  Fuxi Gan,et al.  Study on readout of super-resolution pits with Si thin films , 2003, International Workshop on Information Data Storage and International Symposium on Optical Storage.

[24]  L. Chou,et al.  Microstructural Effects of Recording Marks on Erasing in AgInSbTe Phase-Change Optical Disk , 2003 .

[25]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[26]  Optical properties of Ag8In14Sb55Te23 phase-change films , 2002 .

[27]  Noboru Yamada,et al.  Structural study of a Ag 3.4 In 3.7 Sb 76.4 Te 16.5 quadruple compound utilized for phase-change optical disks , 2001 .

[28]  C. Peng,et al.  Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media , 1997 .