A Partial order approach to decentralized control

In this paper we employ the theory of partially ordered sets to model and analyze a class of decentralized control problems. We show that posets provide a natural way of modeling problems where communication constraints between subsystems have a hierarchical structure. We show that such problems have appealing algebraic properties that can be exploited to parameterize the set of stabilizing controllers. While much of the paper is devoted to problems where the plant and controller have identical communication constraints, we also generalize our theory to case where they may have different communication constraints.

[1]  R. Mullans,et al.  Linear systems on partially ordered time sets , 1973, CDC 1973.

[2]  Joan Feigenbaum,et al.  Information Structures , 1999, Handbook of Discrete and Combinatorial Mathematics.

[3]  P. Varaiya,et al.  Control and coordination in hierarchical systems , 1982, Proceedings of the IEEE.

[4]  A. Rantzer Linear quadratic team theory revisited , 2006, 2006 American Control Conference.

[5]  J. Speyer,et al.  Centralized and decentralized solutions of the linear-exponential-Gaussian problem , 1994, IEEE Trans. Autom. Control..

[6]  E. Davison,et al.  On the stabilization of decentralized control systems , 1973 .

[7]  R. B. Carroll,et al.  A practical implementation for solutions to the algebraic matrix Riccati equation in a LQCM setting , 1998 .

[8]  Michael Rotkowitz On information structures, convexity, and linear optimality , 2008, 2008 47th IEEE Conference on Decision and Control.

[9]  R. Cogill,et al.  Convex synthesis of distributed controllers for spatio-temporal systems with subadditive support functions , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[10]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[11]  S. Lall,et al.  Decentralized control subject to communication and propagation delays , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[12]  Charles A. Desoer,et al.  Algebraic Theory of Linear Feedback Systems with Full and Decentralized Compensators , 1990 .

[13]  Marcel Erné,et al.  A Primer on Galois Connections , 1993 .

[14]  H. Witsenhausen A Counterexample in Stochastic Optimum Control , 1968 .

[15]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[16]  J. Tsitsiklis,et al.  Intractable problems in control theory , 1986 .

[17]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[18]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[19]  Harry J. Huang Essay Topic Writability Examined through a Statistical Approach from the College Writer's Perspective. , 2008 .

[20]  A. Pasini,et al.  On incidence algebras. , 1977 .

[21]  Marcel Wild,et al.  Structural matrix algebras and their lattices of invariant subspaces , 2005 .

[22]  Mehran Mesbahi,et al.  H2 analysis and synthesis of networked dynamic systems , 2009, 2009 American Control Conference.

[23]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[24]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[25]  P. Parrilo,et al.  A partial order approach to decentralized control of spatially invariant systems , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[26]  Petros G. Voulgaris,et al.  A convex characterization of distributed control problems in spatially invariant systems with communication constraints , 2005, Syst. Control. Lett..

[27]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[28]  R. Radner,et al.  Team Decision Problems , 1962 .

[29]  Sanjay Lall,et al.  A Characterization of Convex Problems in Decentralized Control$^ast$ , 2005, IEEE Transactions on Automatic Control.

[30]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[31]  Richard M. Murray,et al.  Discrete State Estimators for a Class of Hybrid Systems on a Lattice , 2004, HSCC.

[32]  R. Curtain Infinite-Dimensional Linear Systems Theory , 1978 .

[33]  M. Mesarovic,et al.  Theory of Hierarchical, Multilevel, Systems , 1970 .

[34]  S. Mitter,et al.  Information and control: Witsenhausen revisited , 1999 .

[35]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[36]  C. Scherer Structured finite-dimensional controller design by convex optimization , 2002 .

[37]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[38]  John R. Beaumont,et al.  Control and Coordination in Hierarchical Systems , 1981 .

[39]  Petros G. Voulgaris,et al.  OPTIMAL DISTRIBUTED CONTROL WITH DISTRIBUTED DELAYED MEASUREMENTS , 2002 .

[40]  Michael Athans,et al.  Survey of decentralized control methods for large scale systems , 1978 .

[41]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[42]  S. Lall,et al.  An explicit state-space solution for a decentralized two-player optimal linear-quadratic regulator , 2010, Proceedings of the 2010 American Control Conference.

[43]  Petros G. Voulgaris,et al.  Control of nested systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[44]  Petros G. Voulgaris Control under structural constraints: An input-output approach , 1998, Robustness in Identification and Control.

[45]  John N. Tsitsiklis,et al.  On the Complexity of Designing Distributed Protocols , 1982, Inf. Control..

[46]  Qing-Chang Zhong,et al.  Robust Control of Time-delay Systems , 2006 .

[47]  Cédric Langbort,et al.  Distributed control design for systems interconnected over an arbitrary graph , 2004, IEEE Transactions on Automatic Control.

[48]  J. Tsitsiklis,et al.  NP-Hardness of Some Linear Control Design Problems , 1997 .

[49]  G. Rota On the Foundations of Combinatorial Theory , 2009 .

[50]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[51]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[52]  John N. Tsitsiklis,et al.  On the complexity of decentralized decision making and detection problems , 1985 .

[53]  P. Voulgaris A convex characterization of classes of problems in control with specific interaction and communication structures , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[54]  Pablo A. Parrilo,et al.  A poset framework to model decentralized control problems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[55]  Y. Ho,et al.  Team decision theory and information structures in optimal control problems--Part II , 1972 .

[56]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[57]  Sanjay Lall,et al.  Optimal synthesis and explicit state-space solution for a decentralized two-player linear-quadratic regulator , 2010, 49th IEEE Conference on Decision and Control (CDC).

[58]  Nader Motee,et al.  Optimal Control of Spatially Distributed Systems , 2008, 2007 American Control Conference.

[59]  R. Cogill,et al.  A Simple Condition for the Convexity of Optimal Control over Networks with Delays , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[60]  D. Vecchio,et al.  Discrete state estimators for a class of nondeterministic hybrid systems on a lattice , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[61]  H. Witsenhausen Separation of estimation and control for discrete time systems , 1971 .

[62]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[63]  C. Desoer,et al.  Linear System Theory , 1963 .

[64]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[65]  B. Bernhardsson,et al.  Minimax Team Decision Problems , 2007, 2007 American Control Conference.

[66]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[67]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[68]  Stephen P. Banks State-Space and Frequency Domain Methods in the Control of Distributed Parameter Systems , 1983 .