ACTH 1-24 and other melanocortins for COVID-19 treatment.

3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506, 2020. 4. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, Hlh Across Speciality Collaboration UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395(10229):1033–1034, 2020. 5. Fardet L, Galicier L, Lambotte O, Marzac C, Aumont C, Chahwan D, Coppo P, Hejblum G: Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol 66(9):2613–2620, 2014. 6. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ: The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents; 2020;105954, 2020 [Epub ahead of print]. 7. Russell CD, Millar JE, Baillie JK: Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395(10223):473–475, 2020. 8. Ornillo C, Kuntsevich V, Astua A, Peng C, Barash I, Capponi VJ, Chan PP, Winchester JF: Mp216 clinical improvement in hemophagocytic lymphohistiocytosis with daily adsorptive hemoperfusion. Nephrol Dialysis Transplant 31(suppl_1):i412–i420, 2016. 9. Greil C, Roether F, La Rosee P, Grimbacher B, Duerschmied D, Warnatz K: Rescue of cytokine storm due to HLH by hemoadsorption in a CTLA4-deficient patient. J Clin Immunol 37(3):273–276, 2017. 10. Frimmel S, Hinz M, Schipper J, Bogdanow S, Mitzner S, Koball S: Cytokine adsorption is a promising tool in the therapy of hemophagocytic lymphohistiocytosis. Int J Artif Organs 42(11):658–664, 2019. 11. Frimmel S, Schipper J, Henschel J, Yu TT, Mitzner SR, Koball S: First description of single-pass albumin dialysis combined with cytokine adsorption in fulminant liver failure and hemophagocytic syndrome resulting from generalized herpes simplex virus 1 infection. Liver Transpl 20(12):1523– 1524, 2014. 12. Napp LC, Ziegeler S, Kindgen-Milles D: Rationale of hemoadsorption during extracorporeal membrane oxygenation support. Blood Purif 48(3):203–214, 2019. 13. Friesecke S, Stecher SS, Gross S, Felix SB, Nierhaus A: Extracorporeal cytokine elimination as rescue therapy in refractory septic shock: a prospective singlecenter study. J Artif Organs 20(3):252–259, 2017. 14. Kogelmann K, Jarczak D, Scheller M, Druner M: Hemoadsorption by CytoSorb in septic patients: a case series. Crit Care 21(1):74, 2017. 15. Schädler D, Pausch C, Heise D, Meier-Hellmann A, Brederlau J, Weiler N, Marx G, Putensen C, Spies C, Jörres A, et al.: The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients:a randomized controlled trial. PLoS One 12(10):e0187015, 2017. 16. Hawchar F, Laszlo I, Oveges N, Trasy D, Ondrik Z, Molnar Z: Extracorporeal cytokine adsorption in septic shock: a proof of concept randomized, controlled pilot study. J Crit Care 49:172–178, 2019. 17. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP: The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol; 2020 [Epub ahead of print].

[1]  Matthew Rowland,et al.  Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed , 2020, The Lancet.

[2]  D. Jarczak,et al.  Hemoadsorption by CytoSorb in septic patients: a case series , 2017, Critical Care.

[3]  S. Ostrowski,et al.  Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism , 2017, Critical Care.

[4]  S. Leone,et al.  Developments and new vistas in the field of melanocortins , 2015, Biomolecular concepts.

[5]  G. Ippolito,et al.  Ebola virus disease complicated with viral interstitial pneumonia: a case report , 2015, BMC Infectious Diseases.

[6]  S. Leone,et al.  Melanocortins as innovative drugs for ischemic diseases and neurodegenerative disorders: established data and perspectives. , 2013, Current medicinal chemistry.

[7]  S. Guarini,et al.  Survival rate after early treatment for acute type-A aortic dissection with ACTH-(1–24) , 2001, The Lancet.

[8]  D. Altavilla,et al.  Tumour necrosis factor‐α as a target of melanocortins in haemorrhagic shock, in the anaesthetized rat , 1998, British journal of pharmacology.

[9]  S. Guarini,et al.  Resuscitating effect of melanocortin peptides after prolonged respiratory arrest , 1997, British journal of pharmacology.

[10]  S. Guarini,et al.  The adrenocorticotropic hormone (ACTH)-induced reversal of hemorrhagic shock. , 1989, Resuscitation.

[11]  S. Guarini,et al.  Adrenal-independent, anti-shock effect of ACTH-(1-24) in rats. , 1986, European journal of pharmacology.