Packing tight Hamilton cycles in 3-uniform hypergraphs

Consider a 3-uniform hypergraph <i>H</i> with <i>n</i> vertices. A tight Hamilton cycle <i>C</i> ⊂ <i>H</i> is a collection of <i>n</i> edges for which there is an ordering of the vertices <i>v</i><sub>1</sub>,..., <i>v</i><sub><i>n</i></sub> where every triple of consecutive vertices {<i>v</i><sub><i>i</i></sub>, <i>v</i><sub><i>i</i>+1</sub>, <i>v</i><sub><i>i</i>+2</sub>} is an edge of <i>C</i> (indices considered modulo <i>n</i>). We develop new techniques which show that under certain natural pseudo-random conditions, almost all edges of <i>H</i> can be covered by edge-disjoint tight Hamilton cycles, for <i>n</i> divisible by 4. Consequently, random 3-uniform hypergraphs can be almost completely packed with tight Hamilton cycles <b>whp</b>, for <i>n</i> divisible by 4 and <i>p</i> not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo-random digraphs with even numbers of vertices.

[1]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[2]  Michael Krivelevich,et al.  On two Hamilton cycle problems in random graphs , 2008 .

[3]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[4]  C. Nash-Williams,et al.  Hamiltonian arcs and circuits , 1971 .

[5]  Wojciech Samotij,et al.  Optimal Packings of Hamilton Cycles in Sparse Random Graphs , 2011, SIAM J. Discret. Math..

[6]  Daniela Kühn,et al.  A survey on Hamilton cycles in directed graphs , 2010, Eur. J. Comb..

[7]  Benny Sudakov,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003 .

[8]  Hiêp Hàn,et al.  Dirac-type results for loose Hamilton cycles in uniform hypergraphs , 2010, J. Comb. Theory, Ser. B.

[9]  Daniela Kühn,et al.  Approximate Hamilton decompositions of random graphs , 2012, Random Struct. Algorithms.

[10]  Alan M. Frieze,et al.  Packing hamilton cycles in random and pseudo-random hypergraphs , 2012, Random Struct. Algorithms.

[11]  Béla Bollobás,et al.  On matchings and hamiltonian cycles in random graphs Annals of Discrete Mathematics 28 , 1985 .

[12]  Alan M. Frieze,et al.  On packing Hamilton cycles in ?-regular graphs , 2005, J. Comb. Theory, Ser. B.

[13]  C. McDiarmid Concentration , 1862, The Dental register.

[14]  Alan M. Frieze,et al.  Packing tight Hamilton cycles in 3-uniform hypergraphs , 2012 .

[15]  Béla Bollobás,et al.  Random Graphs , 1985 .

[16]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[17]  Baoguang Xu,et al.  On the Hamiltonian cycle Decompositions of Complete 3-Uniform Hypergraphs , 2002, Electron. Notes Discret. Math..

[18]  Daniela Kühn,et al.  Hamilton l-cycles in uniform hypergraphs , 2009, J. Comb. Theory, Ser. A.

[19]  Deryk Osthus,et al.  Hamilton decompositions of regular tournaments , 2009, 0908.3411.

[20]  A. Thomason Pseudo-Random Graphs , 1987 .

[21]  Guojun Li,et al.  Edge disjoint Hamilton cycles in graphs , 2000 .

[22]  Helen Verrall,et al.  Hamilton decompositions of complete 3-uniform hypergraphs , 1994, Discret. Math..

[23]  Daniela Kühn,et al.  Loose Hamilton cycles in hypergraphs , 2008, Discret. Math..

[24]  Daniela Kühn,et al.  Edge-disjoint Hamilton cycles in graphs , 2012, J. Comb. Theory, Ser. B.

[25]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[26]  Nicholas C. Wormald,et al.  Random Matchings Which Induce Hamilton Cycles and Hamiltonian Decompositions of Random Regular Graphs , 2001, J. Comb. Theory, Ser. B.

[27]  Alan M. Frieze,et al.  Loose Hamilton Cycles in Random 3-Uniform Hypergraphs , 2010, Electron. J. Comb..

[28]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[29]  Alan M. Frieze,et al.  Perfect matchings in random graphs with prescribed minimal degree , 2003, SODA '03.