Time-Variant Reliability-Based Optimization with Double-Loop Kriging Surrogates

[1]  Nicolas Gayton,et al.  AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .

[2]  Yao Wang,et al.  Time-Dependent Reliability-Based Design Optimization Utilizing Nonintrusive Polynomial Chaos , 2013, J. Appl. Math..

[3]  Dan M. Frangopol,et al.  An efficient time-dependent reliability method , 2019, Structural Safety.

[4]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[5]  Pingfeng Wang,et al.  A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization , 2012 .

[6]  Bruno Sudret,et al.  Analytical derivation of the outcrossing rate in time-variant reliability problems , 2008 .

[7]  Zhen Hu,et al.  Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis , 2015 .

[8]  Sankaran Mahadevan,et al.  A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis , 2016 .

[9]  S. Rice Mathematical analysis of random noise , 1944 .

[10]  Bruno Sudret,et al.  The PHI2 method: a way to compute time-variant reliability , 2004, Reliab. Eng. Syst. Saf..

[11]  Alaa Chateauneuf,et al.  Benchmark study of numerical methods for reliability-based design optimization , 2010 .

[12]  Zissimos P. Mourelatos,et al.  Design for Lifecycle Cost Using Time-Dependent Reliability Analysis , 2008 .

[13]  Zhen Hu,et al.  Reliability-based design optimization under stationary stochastic process loads , 2016 .

[14]  V. Dubourg Adaptive surrogate models for reliability analysis and reliability-based design optimization , 2011 .