A molecular code for endosomal recycling of phosphorylated cargos by the SNX27–retromer complex

[1]  R. Teasdale,et al.  Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth , 2016, Molecular biology of the cell.

[2]  C. Blackstone,et al.  FAM21 directs SNX27–retromer cargoes to the plasma membrane by preventing transport to the Golgi apparatus , 2016, Nature Communications.

[3]  Salvador Martínez-Bartolomé,et al.  ΔF508 CFTR interactome remodeling promotes rescue of Cystic Fibrosis , 2015, Nature.

[4]  K. Roche,et al.  Dynamic Regulation of N-Methyl-d-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors by Posttranslational Modifications* , 2015, The Journal of Biological Chemistry.

[5]  G. Superti-Furga,et al.  A Call for Systematic Research on Solute Carriers , 2015, Cell.

[6]  D. Pim,et al.  A Novel PDZ Domain Interaction Mediates the Binding between Human Papillomavirus 16 L2 and Sorting Nexin 27 and Modulates Virion Trafficking , 2015, Journal of Virology.

[7]  A. Lavie,et al.  Structural Basis of a Key Factor Regulating the Affinity between the Zonula Occludens First PDZ Domain and Claudins* , 2015, The Journal of Biological Chemistry.

[8]  P. Cullen,et al.  A defect in the retromer accessory protein, SNX27, manifests by infantile myoclonic epilepsy and neurodegeneration , 2015, neurogenetics.

[9]  S. Gabriel,et al.  Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction , 2015, Nature Genetics.

[10]  Stephen Wilcox,et al.  An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. , 2015, Cell reports.

[11]  D. V. van Aalten,et al.  Phosphorylation of Synaptic Vesicle Protein 2A at Thr84 by Casein Kinase 1 Family Kinases Controls the Specific Retrieval of Synaptotagmin-1 , 2015, The Journal of Neuroscience.

[12]  R. Teasdale,et al.  Phosphoinositide binding by the SNX27 FERM domain regulates its localization at the immune synapse of activated T-cells , 2015, Journal of Cell Science.

[13]  Huaxi Xu,et al.  Sorting nexin 27 regulates Aβ production through modulating γ-secretase activity. , 2014, Cell reports.

[14]  R. Teasdale,et al.  Structural Basis for Different Phosphoinositide Specificities of the PX Domains of Sorting Nexins Regulating G-protein Signaling* , 2014, The Journal of Biological Chemistry.

[15]  R. Teasdale,et al.  A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer , 2014, Proceedings of the National Academy of Sciences.

[16]  R. Huganir,et al.  Sorting Nexin 27 regulates basal and activity-dependent trafficking of AMPARs , 2014, Proceedings of the National Academy of Sciences.

[17]  Aris Fiser,et al.  Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration , 2014, Human molecular genetics.

[18]  L. Mao,et al.  Roles of subunit phosphorylation in regulating glutamate receptor function. , 2014, European journal of pharmacology.

[19]  R. Nicoll,et al.  Retromer Mediates a Discrete Route of Local Membrane Delivery to Dendrites , 2014, Neuron.

[20]  W. Hong,et al.  A role for sorting nexin 27 in AMPA receptor trafficking , 2014, Nature Communications.

[21]  Mingjie Zhang,et al.  Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. , 2013, The Biochemical journal.

[22]  R. Huganir,et al.  PICK1 interacts with PACSIN to regulate AMPA receptor internalization and cerebellar long-term depression , 2013, Proceedings of the National Academy of Sciences.

[23]  J. Reboul,et al.  The Human PDZome: A Gateway to PSD95-Disc Large-Zonula Occludens (PDZ)-mediated Functions* , 2013, Molecular & Cellular Proteomics.

[24]  J. Tavaré,et al.  A global analysis of SNX27–retromer assembly and cargo specificity reveals a function in glucose and metal ion transport , 2013, Nature Cell Biology.

[25]  S. Lipton,et al.  Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction via modulation of glutamate receptor recycling in Down syndrome , 2013, Nature Medicine.

[26]  Zhen Xu,et al.  The structure of the Tiam1 PDZ domain/ phospho-syndecan1 complex reveals a ligand conformation that modulates protein dynamics. , 2013, Structure.

[27]  Huadong Liu,et al.  Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins , 2013, Proceedings of the National Academy of Sciences.

[28]  L. Farrer,et al.  Identification of Alzheimer disease-associated variants in genes that regulate retromer function , 2012, Neurobiology of Aging.

[29]  L. Mei,et al.  VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology , 2011, The Journal of cell biology.

[30]  Ryan T. Strachan,et al.  Distinct Phosphorylation Sites on the β2-Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of β-Arrestin , 2011, Science Signaling.

[31]  M. Farrer,et al.  VPS35 mutations in Parkinson disease. , 2011, American journal of human genetics.

[32]  Marc N. Offman,et al.  A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. , 2011, American journal of human genetics.

[33]  Andrea Bugarcic,et al.  Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases , 2011, Proceedings of the National Academy of Sciences.

[34]  Benjamin E. L. Lauffer,et al.  SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signaling receptors , 2011, Nature Cell Biology.

[35]  W. Kwiatkowski,et al.  Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27 , 2011, Proceedings of the National Academy of Sciences.

[36]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[37]  Severine I. Gharbi,et al.  Translocation dynamics of sorting nexin 27 in activated T cells , 2011, Journal of Cell Science.

[38]  J. Isaac,et al.  Casein Kinase 2 Regulates the NR2 Subunit Composition of Synaptic NMDA Receptors , 2010, Neuron.

[39]  Benjamin E. L. Lauffer,et al.  SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane , 2010, The Journal of cell biology.

[40]  Jie J. Zheng,et al.  ReviewPDZ domains and their binding partners : structure , specificity , and modification , 2010 .

[41]  Todd H. Oakley,et al.  Evolutionary expansion and specialization of the PDZ domains. , 2010, Molecular biology and evolution.

[42]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[43]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[44]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[45]  Patrick R. Cushing,et al.  The relative binding affinities of PDZ partners for CFTR: a biochemical basis for efficient endocytic recycling. , 2008, Biochemistry.

[46]  L. Honig,et al.  Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation , 2008, Proceedings of the National Academy of Sciences.

[47]  Richard D Emes,et al.  Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes , 2008, BMC Neuroscience.

[48]  J. Yates,et al.  A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction , 2007, Nature Neuroscience.

[49]  Jiunn R Chen,et al.  PDZ Domain Binding Selectivity Is Optimized Across the Mouse Proteome , 2007, Science.

[50]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[51]  I. Mérida,et al.  Proteomics identification of sorting nexin 27 as a diacylglycerol kinase zeta-associated protein: new diacylglycerol kinase roles in endocytic recycling. , 2007, Molecular & cellular proteomics : MCP.

[52]  Shigeo Okabe,et al.  Molecular anatomy of the postsynaptic density , 2007, Molecular and Cellular Neuroscience.

[53]  Amos Bairoch,et al.  ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins , 2006, Nucleic Acids Res..

[54]  Takashi Yamauchi,et al.  Interaction of LDL receptor‐related protein 4 (LRP4) with postsynaptic scaffold proteins via its C‐terminal PDZ domain‐binding motif, and its regulation by Ca2+/calmodulin‐dependent protein kinase II , 2006, The European journal of neuroscience.

[55]  Yan Hua Huang,et al.  Regulation of the NMDA Receptor Complex and Trafficking by Activity-Dependent Phosphorylation of the NR2B Subunit PDZ Ligand , 2004, The Journal of Neuroscience.

[56]  P. Marin,et al.  New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4(a) receptor splice variant: roles in receptor targeting , 2004, Journal of Cell Science.

[57]  M. Sheng,et al.  PDZ domain proteins of synapses , 2004, Nature Reviews Neuroscience.

[58]  Mingjie Zhang,et al.  Organization of signaling complexes by PDZ-domain scaffold proteins. , 2003, Accounts of chemical research.

[59]  I. Mérida,et al.  Dynamics of diacylglycerol kinase zeta translocation in living T-cells. Study of the structural domain requirements for translocation and activity. , 2002, The Journal of biological chemistry.

[60]  Y. Kurachi,et al.  PSD-95 Mediates Formation of a Functional Homomeric Kir5.1 Channel in the Brain , 2002, Neuron.

[61]  Eunjoon Kim,et al.  Phosphorylation of Stargazin by Protein Kinase A Regulates Its Interaction with PSD-95* , 2002, The Journal of Biological Chemistry.

[62]  M. Sheng,et al.  PDZ Domains: Structural Modules for Protein Complex Assembly* , 2002, The Journal of Biological Chemistry.

[63]  M. Kennedy,et al.  Signal-processing machines at the postsynaptic density. , 2000, Science.

[64]  R. Huganir,et al.  Phosphorylation of the AMPA Receptor Subunit GluR2 Differentially Regulates Its Interaction with PDZ Domain-Containing Proteins , 2000, The Journal of Neuroscience.

[65]  A. Bretscher,et al.  A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor , 1999, Nature.

[66]  S. Shenolikar,et al.  The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange , 1998, Nature.

[67]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[68]  Solomon H. Snyder,et al.  Binding of the Inward Rectifier K+ Channel Kir 2.3 to PSD-95 Is Regulated by Protein Kinase A Phosphorylation , 1996, Neuron.

[69]  Ballard,et al.  Overview of the CCP 4 suite and current developments , 2022 .