A D-Optimal Design for Estimation of Parameters of an Exponential-Linear Growth Curve of Nanostructures

We consider the problem of determining an optimal experimental design for estimation of parameters of a class of complex curves characterizing nanowire growth that is partially exponential and partially linear. Locally D-optimal designs for some of the models belonging to this class are obtained by using a geometric approach. Further, a Bayesian sequential algorithm is proposed for obtaining D-optimal designs for models with a closed-form solution, and for obtaining efficient designs in situations where theoretical results cannot be obtained. The advantages of the proposed algorithm over traditional approaches adopted in recently reported nanoexperiments are demonstrated using Monte Carlo simulations. The computer code implementing the sequential algorithm is available as supplementary materials.

[1]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[2]  Hari Prasadh Optimal Designs for Nonlinear Regression Models without Prior Point Parameter Estimates , 2016 .

[3]  M. S. Khots,et al.  D-optimal designs , 1995 .

[4]  W. Näther Optimum experimental designs , 1994 .

[5]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[6]  S. Silvey,et al.  A sequentially constructed design for estimating a nonlinear parametric function , 1980 .

[7]  S. Ghosal,et al.  Convergence properties of sequential Bayesian D-optimal designs , 2009 .

[8]  P. Mykland,et al.  Nonlinear Experiments: Optimal Design and Inference Based on Likelihood , 1993 .

[9]  Li Wang,et al.  Statistical Weight Kinetics Modeling and Estimation for Silica Nanowire Growth Catalyzed by Pd Thin Film , 2011, IEEE Transactions on Automation Science and Engineering.

[10]  N. V. Sibirev,et al.  Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  K. Chaloner,et al.  Optimal Bayesian design applied to logistic regression experiments , 1989 .

[12]  G. Hohmann,et al.  On sequential and nonsequential D‐optimal experimental design , 1975 .

[13]  Maurizio Dapor Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.

[14]  George E. P. Box,et al.  SEQUENTIAL DESIGN OF EXPERIMENTS FOR NONLINEAR MODELS. , 1963 .

[15]  Blaza Toman,et al.  Bayesian Experimental Design , 2006 .

[16]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[17]  Jye-Chyi Lu,et al.  A Review of Statistical Methods for Quality Improvement and Control in Nanotechnology , 2009 .

[18]  S. Silvey,et al.  A geometric approach to optimal design theory , 1973 .

[19]  Holger Dette,et al.  Optimal design for additive partially nonlinear models , 2011 .

[20]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[21]  Tirthankar Dasgupta,et al.  Statistical Modeling and Analysis for Robust Synthesis of Nanostructures , 2008 .

[22]  D. Titterington Optimal design: Some geometrical aspects of D-optimality , 1975 .

[23]  Jennifer Seberry,et al.  D-optimal designs , 2011 .

[24]  Drew Seils,et al.  Optimal design , 2007 .

[25]  Juli Atherton,et al.  Bayesian optimal design for changepoint problems. , 2009 .

[26]  Linda M. Haines,et al.  Bayesian D-optimal designs for the exponential growth model , 1995 .

[27]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[28]  D. V. Gokhale,et al.  A Survey of Statistical Design and Linear Models. , 1976 .

[29]  Holger Dette,et al.  On a mixture of the D- and D1-optimality criterion in polynomial regression , 1993 .

[30]  H. Chernoff Sequential Design of Experiments , 1959 .

[31]  Linda M. Haines,et al.  Optimal design for nonlinear regression models , 1993 .

[32]  J. Hirth,et al.  Kinetics of Diffusion-Controlled Whisker Growth , 1964 .

[33]  Hovav A. Dror,et al.  Sequential Experimental Designs for Generalized Linear Models , 2008 .

[34]  Jörg Lingens,et al.  The Growth Model , 2004 .

[35]  Seiji Takeda,et al.  Growth rate of silicon nanowires , 2005 .

[36]  I. Ford,et al.  The Use of a Canonical Form in the Construction of Locally Optimal Designs for Non‐Linear Problems , 1992 .

[37]  Walter T. Federer,et al.  Sequential Design of Experiments , 1967 .

[38]  Peng Sun,et al.  Computation of Minimum Volume Covering Ellipsoids , 2002, Oper. Res..

[39]  Qiang Huang,et al.  Physics-driven Bayesian hierarchical modeling of the nanowire growth process at each scale , 2010 .

[40]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[41]  H. Chernoff Approaches in Sequential Design of Experiments , 1973 .