Interpreting Lambda Calculus in Domain-Valued Random Variables

We develop Boolean-valued domain theory and show how the lambdacalculus can be interpreted in using domain-valued random variables. We focus on the reflexive domain construction rather than the language and its semantics. The notion of equality has to be interpreted in the Boolean algebra and when we say that an equation is valid in the model we mean that its interpretation is the top element of the Boolean algebra.

[1]  Daniel M. Roy,et al.  Noncomputable Conditional Distributions , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[2]  Giuseppe Rosolini,et al.  A Category Theoretic Formulation for Engeler-style Models of the Untyped λ-Calculus , 2006 .

[3]  A category-theoretic approach to boolean-valued models of set theory , 1986 .

[4]  Robert Furber,et al.  Boolean-Valued Semantics for the Stochastic λ-Calculus , 2018, LICS.

[5]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[6]  R. Soare Recursively enumerable sets and degrees , 1987 .

[7]  Thomas Ehrhard,et al.  Measurable cones and stable, measurable functions: a model for probabilistic higher-order programming , 2017, Proc. ACM Program. Lang..

[8]  D. Scott,et al.  Sheaves and logic , 1979 .

[9]  Daniel M. Roy,et al.  On the Computability of Conditional Probability , 2010, J. ACM.

[10]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[11]  G. Monro Quasitopoi, logic and heyting-valued models , 1986 .

[12]  Ohad Kammar,et al.  Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[13]  Dana S. Scott,et al.  A proof of the independence of the continuum hypothesis , 1967, Mathematical systems theory.

[14]  Ohad Kammar,et al.  A convenient category for higher-order probability theory , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[15]  P. Panangaden,et al.  Universal Semantics for the Stochastic λ-Calculus , 2021, 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[16]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[17]  John L. Bell,et al.  Set Theory: Boolean-Valued Models and Independence Proofs , 2005 .

[18]  Clifford Spector,et al.  Measure-theoretic construction of incomparable hyperdegrees , 1958, Journal of Symbolic Logic.

[19]  Ugo Dal Lago,et al.  A lambda-calculus foundation for universal probabilistic programming , 2015, ICFP.

[20]  Daniel M. Roy Computability, inference and modeling in probabilistic programming , 2011 .

[21]  Ohad Kammar,et al.  A domain theory for statistical probabilistic programming , 2018, Proc. ACM Program. Lang..

[22]  Prakash Panangaden,et al.  Quantitative Algebraic Reasoning , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[23]  E. Engeler Algebras and combinators , 1981 .

[24]  Emil L. Post,et al.  The Upper Semi-Lattice of Degrees of Recursive Unsolvability , 1954 .

[25]  R. Goldblatt Topoi, the Categorial Analysis of Logic , 1979 .

[26]  Fredrik Dahlqvist,et al.  Semantics of higher-order probabilistic programs with conditioning , 2019, Proc. ACM Program. Lang..

[27]  Thomas Ehrhard,et al.  Probabilistic coherence spaces are fully abstract for probabilistic PCF , 2014, POPL.

[28]  Semen Samsonovich Kutateladze What is Boolean valued analysis? , 1999, Siberian Advances in Mathematics.

[29]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.