Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces

This paper investigates existence of PC-mild solutions of impulsive fractional differential inclusions with nonlocal conditions when the linear part is a fractional sectorial operators like in Bajlekova (2001) 1 on Banach spaces. We derive two existence results of PC-mild solutions when the values of the semilinear term F is convex as well as another existence result when its values are nonconvex. Further, the compactness of the set of solutions is characterized.

[1]  Wei Wei,et al.  On the natural solution of an impulsive fractional differential equation of order q ∈ (1, 2)☆ , 2012 .

[2]  Abdelghani Ouahab,et al.  Fractional semilinear differential inclusions , 2012, Comput. Math. Appl..

[3]  Ravi P. Agarwal,et al.  On the Dimension of the Solution Set for Semilinear Fractional Differential Inclusions , 2012 .

[4]  Geraldo M. De Araujo,et al.  Existence of solutions for an Oldroyd model of viscoelastic fluids , 2009 .

[5]  Michal Fečkan,et al.  On the new concept of solutions and existence results for impulsive fractional evolution equations , 2011 .

[6]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[7]  A. Ibrahim,et al.  Mild Solutions for Nonlocal Impulsive Fractional Semilinear Differential Inclusions with Delay in Banach Spaces , 2013 .

[8]  R. Agarwal,et al.  A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions , 2010 .

[9]  Ravi P. Agarwal,et al.  A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative , 2009 .

[10]  S. Kiruthika,et al.  EXISTENCE OF SOLUTIONS OF ABSTRACT FRACTIONAL IMPULSIVE SEMILINEAR EVOLUTION EQUATIONS , 2010 .

[11]  M. Benchohra,et al.  IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES , 2009 .

[12]  A. G. Ibrahim,et al.  Existence of mild solutions of a semilinear evolution differential inclusions with nonlocal conditions. , 2009 .

[13]  Yong Zhou,et al.  Existence of mild solutions for fractional neutral evolution equations , 2010, Comput. Math. Appl..

[14]  Choonkil Park,et al.  A Fixed Point Approach to the Stability of a Quadratic Functional Equation in -Algebras , 2009 .

[15]  J. Ball Initial-boundary value problems for an extensible beam , 1973 .

[16]  Xinzhi Liu,et al.  Boundedness for impulsive delay differential equations and applications to population growth models , 2003 .

[17]  M. Benchohra,et al.  Impulsive differential equations and inclusions , 2006 .

[18]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[19]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[20]  Peiguang Wang,et al.  Oscillatory Criteria for Higher Order Functional Differential Equations with Damping , 2013 .

[21]  J. Aubin Set-valued analysis , 1990 .

[22]  T F Nonnenmacher,et al.  A fractional calculus approach to self-similar protein dynamics. , 1995, Biophysical journal.

[23]  Peiguang Wang,et al.  Generalized Quasilinearization for the System of Fractional Differential Equations , 2013 .

[24]  H. Mönch,et al.  Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces , 1980 .

[25]  V. Lakshmikantham,et al.  Theory of fractional functional differential equations , 2008 .

[26]  Giuseppe Conti,et al.  On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space , 1996 .

[27]  S. Nadler,et al.  Multi-valued contraction mappings in generalized metric spaces , 1970 .

[28]  V. Lakshmikantham,et al.  Basic theory of fractional differential equations , 2008 .

[29]  Xiao-Bao Shu,et al.  The existence of mild solutions for impulsive fractional partial differential equations , 2011 .

[30]  Miao Changxing,et al.  FRACTIONAL ORDER EVOLUTION EQUATION INTERPOLATING BOTH HEAT AND WAVE EQUATION , 1997 .

[31]  Yong Zhou,et al.  Abstract Cauchy problem for fractional differential equations , 2013 .

[32]  A. G. Ibrahim,et al.  Multivalued fractional differential equations , 1995 .

[33]  T. Cardinali,et al.  Impulsive mild solutions for semilinear differential inclusions with nonlocal conditions in Banach spaces , 2012 .

[34]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[35]  Francisco Periago,et al.  A functional calculus for almost sectorial operators and applications to abstract evolution equations , 2002 .

[36]  I. I. Vrabie,et al.  Existence in the large for nonlinear delay evolution inclusions with nonlocal initial conditions , 2012 .

[37]  JinRong Wang,et al.  Response to "Comments on the concept of existence of solution for impulsive fractional differential equations [Commun Nonlinear Sci Numer Simul 2014;19: 401-3.]" , 2014, Commun. Nonlinear Sci. Numer. Simul..

[38]  Ravi P. Agarwal,et al.  Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions , 2012 .

[39]  Alberto Bressan,et al.  Extensions and selections of maps with decomposable values , 1988 .

[40]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[41]  Ravi P. Agarwal,et al.  Local Fractional Fourier Series with Application to Wave Equation in Fractal Vibrating String , 2012 .

[42]  Valeri Obukhovskii,et al.  Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces , 2011 .

[43]  Z. Fan Impulsive problems for semilinear differential equations with nonlocal conditions , 2010 .

[44]  A. G. Ibrahim,et al.  Existence and Controllability Results for Nonlocal Fractional Impulsive Differential Inclusions in Banach Spaces , 2013 .

[45]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[46]  Rong-Nian Wang,et al.  Abstract fractional Cauchy problems with almost sectorial operators , 2012 .

[47]  Yong Zhou,et al.  Nonlinear evolution inclusions: Topological characterizations of solution sets and applications , 2013 .

[48]  I. Podlubny Fractional differential equations , 1998 .

[49]  Dieter Bothe,et al.  Multivalued perturbations ofm-accretive differential inclusions , 1998 .

[50]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[51]  Emilia Bazhlekova,et al.  Fractional evolution equations in Banach spaces , 2001 .

[52]  Johnny Henderson,et al.  Impulsive differential inclusions with fractional order , 2010, Comput. Math. Appl..

[53]  Yong Zhou,et al.  Existence of mild solutions for fractional evolution equations , 2013 .

[54]  W. Fitzgibbon,et al.  Global Existence and Boundedness of Solutions to the Extensible Beam Equation , 1982 .

[55]  R. Anderson,et al.  Pulse mass measles vaccination across age cohorts. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Yong Zhou,et al.  On the concept and existence of solution for impulsive fractional differential equations , 2012 .

[57]  F. Hiai,et al.  Integrals, conditional expectations, and martingales of multivalued functions , 1977 .

[58]  Mouffak Benchohra,et al.  Existence results for fractional order semilinear functional differential equations with nondense domain , 2010 .

[59]  Yong Zhou,et al.  Nonlocal Cauchy problem for fractional evolution equations , 2010 .

[60]  Bashir Ahmad,et al.  Comments on the concept of existence of solution for impulsive fractional differential equations , 2014, Commun. Nonlinear Sci. Numer. Simul..

[61]  V. Obukhovskii,et al.  On some classes of operator inclusions with lower semicontinuous nonlinearities , 2001 .

[62]  S. Sivasundaram,et al.  Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations , 2009 .

[63]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .