Efficient Bilevel Surrogate Approach for Optimization Under Uncertainty of Shock Control Bumps

The assessment of uncertainties is essential in aerodynamic shape optimization problems to come up with configurations that are more robust against operational and geometrical uncertainties. Howeve...

[1]  Stefan Görtz,et al.  Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function , 2013 .

[2]  Geoffrey T. Parks,et al.  Robust Aerodynamic Design Optimization Using Polynomial Chaos , 2009 .

[3]  P. Bruce,et al.  Review of research into shock control bumps , 2015 .

[4]  Jerome P. Jarrett,et al.  Horsetail matching: a flexible approach to optimization under uncertainty* , 2017 .

[5]  Mian Li,et al.  Robust Optimization and Sensitivity Analysis with Multi-Objective Genetic Algorithms: Single- and Multi-Disciplinary Applications , 2007 .

[6]  Stefan Görtz,et al.  Efficient Quantification of Aerodynamic Uncertainty due to Random Geometry Perturbations , 2014 .

[7]  Alexandros A. Taflanidis,et al.  Sequential approximate optimization for design under uncertainty problems utilizing Kriging metamodeling in augmented input space , 2017 .

[8]  Pranay Seshadri,et al.  A density-matching approach for optimization under uncertainty , 2014, 1510.04162.

[9]  Roland Schöbi,et al.  Surrogate models for uncertainty quantification in the context of imprecise probability modelling , 2017 .

[10]  Nicolas Gayton,et al.  AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .

[11]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[12]  T. Rowan Functional stability analysis of numerical algorithms , 1990 .

[13]  Thomas Gerhold,et al.  Overview of the Hybrid RANS Code TAU , 2005 .

[14]  Régis Duvigneau Aerodynamic Shape Optimization with Uncertain Operating Conditions using Metamodels , 2007 .

[15]  Jerome Sacks,et al.  Choosing the Sample Size of a Computer Experiment: A Practical Guide , 2009, Technometrics.

[16]  Mihai Anitescu,et al.  Mixed Aleatory/Epistemic Uncertainty Quantification for Hypersonic Flows via Gradient-Based Optimization and Surrogate Models , 2012 .

[17]  Laura Painton Swiler,et al.  Efficient algorithms for mixed aleatory-epistemic uncertainty quantification with application to radiation-hardened electronics. Part I, algorithms and benchmark results. , 2009 .

[18]  Caslav Ilic,et al.  Surrogate-Based Aerodynamic Shape Optimization of a Wing-Body Transport Aircraft Configuration , 2015 .

[19]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[20]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[21]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[22]  Wei He,et al.  An effective approach for robust design optimization of wind turbine airfoils with random aerodynamic variables , 2019, Advances in Mechanical Engineering.

[23]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[24]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[25]  Z. Gao,et al.  Robust Design of High Speed Natural-Laminar-Flow Airfoil for High Lift , 2017 .

[26]  Markus P. Rumpfkeil,et al.  Robust design under mixed aleatory/epistemic uncertainties using gradients and surrogates , 2013 .

[27]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[28]  K. Mazaheri,et al.  The Multi-point Optimization of Shock Control Bump with Constant-Lift Constraint Enhanced with Suction and Blowing for a Supercritical Airfoil , 2016 .

[29]  Ralf Zimmermann,et al.  Asymptotic Behavior of the Likelihood Function of Covariance Matrices of Spatial Gaussian Processes , 2010, J. Appl. Math..

[30]  T. Yun,et al.  Shock control bump parametric research on supercritical airfoil , 2011 .

[31]  Fabio Nobile,et al.  Continuation Multilevel Monte Carlo Evolutionary Algorithm for Robust Aerodynamic Shape Design , 2019, Journal of Aircraft.

[32]  Ewald Krämer,et al.  Shock control bump robustness enhancement , 2012 .

[33]  E. Stanewsky Drag reduction by shock and boundary layer control : results of the project EUROSHOCK II, supported by the European Union, 1996-1999 , 2002 .

[34]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[35]  Ling Li,et al.  Sequential design of computer experiments for the estimation of a probability of failure , 2010, Statistics and Computing.

[36]  Gerhart I. Schuëller,et al.  Computational methods in optimization considering uncertainties – An overview , 2008 .

[37]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark , 2015 .

[38]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[39]  Hossein Zare-Behtash,et al.  State-of-the-art in aerodynamic shape optimisation methods , 2018, Appl. Soft Comput..

[40]  Eugenio Oñate,et al.  Active transonic aerofoil design optimization usingrobust multiobjective evolutionary algorithms , 2011 .

[41]  Edward Jinks Adaptive shock control bumps , 2014 .

[42]  T. Lutz,et al.  Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings , 2007 .

[43]  H. Babinsky,et al.  Experimental study into the flow physics of three-dimensional shock control bumps , 2012 .

[44]  Shun Kang,et al.  Uncertainty‐based robust aerodynamic optimization of rotor blades , 2013 .

[45]  T. Lutz,et al.  Numerical Optimization of Finite Shock Control Bumps , 2006 .

[46]  Soshi Kawai,et al.  Kriging-model-based uncertainty quantification in computational fluid dynamics , 2014 .