An approach for the measurement of the bulk temperature of single crystal diamond using an X-ray free electron laser

[1]  M. Gauthier,et al.  Nanosecond formation of diamond and lonsdaleite by shock compression of graphite , 2016, Nature Communications.

[2]  Prashant Shekhar,et al.  Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction , 2018, Science.

[3]  S. Glenzer,et al.  A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics , 2017, Nature Communications.

[4]  H. Graafsma,et al.  Improving the performance of high-resolution X-ray spectrometers with position-sensitive pixel detectors. , 2005, Journal of synchrotron radiation.

[5]  G. Squires Correlation functions in nuclear scattering , 2012 .

[6]  F. Boscherini,et al.  X-ray optics : high-energy-resolution applications , 2004 .

[7]  S. Regan,et al.  Theory of Thomson scattering in inhomogeneous media , 2016, Scientific Reports.

[8]  G. Ruocco,et al.  Viscoelastic behavior of water in the terahertz-frequency range: an inelastic x-ray scattering study. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  S. Glenzer,et al.  Matter under extreme conditions experiments at the Linac Coherent Light Source , 2016 .

[10]  A. Baron High-Resolution Inelastic X-Ray Scattering Part II: Scattering Theory, Harmonic Phonons, and Calculations , 2018, Synchrotron Light Sources and Free-Electron Lasers.

[11]  J. Warren,et al.  Lattice Dynamics of Diamond , 1967 .

[12]  H. J. Lee,et al.  In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics , 2017, Nature.

[13]  L. Divol,et al.  Observations of continuum depression in warm dense matter with x-ray Thomson scattering. , 2013, Physical review letters.

[14]  Gilbert W. Collins,et al.  Experimental evidence for superionic water ice using shock compression , 2018 .

[15]  H. Sinn,et al.  The SASE1 X-ray beam transport system. , 2019, Journal of synchrotron radiation.

[16]  T. Guillot Interiors of giant planets inside and outside the solar system. , 1999, Science.

[17]  Gilbert W. Collins,et al.  Identification of Phase Transitions and Metastability in Dynamically Compressed Antimony Using Ultrafast X-Ray Diffraction. , 2019, Physical review letters.

[18]  A. Macrander,et al.  PHONON DISPERSION OF DIAMOND MEASURED BY INELASTIC X-RAY SCATTERING , 1998 .

[19]  H J Lee,et al.  Free-electron X-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter. , 2014, Physical review letters.

[20]  M. M. Sala,et al.  A high-energy-resolution resonant inelastic X-ray scattering spectrometer at ID20 of the European Synchrotron Radiation Facility. , 2018, Journal of synchrotron radiation.

[21]  D. Turnbull,et al.  Ultrabright X-ray laser scattering for dynamic warm dense matter physics , 2015, Nature Photonics.

[22]  G. Gregori,et al.  Low frequency structural dynamics of warm dense matter , 2009 .

[23]  Martin J. Klein,et al.  Principle of Detailed Balance , 1955 .

[24]  Gilbert W. Collins,et al.  A measurement of the equation of state of carbon envelopes of white dwarfs , 2020, Nature.

[25]  Harald Sinn,et al.  Photon Beam Transport and Scientific Instruments at the European XFEL , 2017 .

[26]  High-Resolution Inelastic X-Ray Scattering I: Context, Spectrometers, Samples, and Superconductors , 2020, Synchrotron Light Sources and Free-Electron Lasers.

[27]  E. Burkel Phonon spectroscopy by inelastic x-ray scattering , 2000 .

[28]  H. Sinn,et al.  A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator , 2020 .

[29]  H. J. Lee,et al.  Phase transition lowering in dynamically compressed silicon , 2018, Nature Physics.

[30]  H. J. Lee,et al.  Erratum: "Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source" [Rev. Sci. Instrum. 89, 10F104 (2018)]. , 2018, The Review of scientific instruments.

[31]  J. A. Morrison,et al.  The heat capacity of diamond between 12·8° and 277°k , 1958 .

[32]  Shih-Lin Chang Dynamical Theory of X-Ray Diffraction , 2004 .

[33]  A. Baron,et al.  High-Resolution Inelastic X-Ray Scattering I: Context, Spectrometers, Samples, and Superconductors , 2015 .

[34]  Frank S. Milos,et al.  Ablation and Thermal Response Program for Spacecraft Heatshield Analysis , 1999 .

[35]  Gilbert W. Collins,et al.  Probing matter at Gbar pressures at the NIF , 2014 .

[36]  Eberhard Burkel,et al.  Inelastic Scattering of X-Rays with Very High Energy Resolution , 1991 .

[37]  R. P. Drake Introduction to High-Energy-Density Physics , 2006 .

[38]  F. Sette,et al.  Inelastic X-ray scattering with very high resolution at the ESRF , 2017 .

[39]  U. Englisch,et al.  First operation of the SASE1 undulator system of the European X-ray Free-Electron Laser. , 2019, Journal of synchrotron radiation.

[40]  S. Boutet,et al.  Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter , 2013, Science.

[41]  G. Ruocco,et al.  High-frequency longitudinal and transverse dynamics in water. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Marcin Sikorski,et al.  ePix100 camera: Use and applications at LCLS , 2016 .

[43]  Gilbert W. Collins,et al.  Solid iron compressed up to 560 GPa. , 2013, Physical review letters.

[44]  B. Nagler,et al.  Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source. , 2017, The Review of scientific instruments.

[45]  S. Toleikis,et al.  Time evolution of electron structure in femtosecond heated warm dense molybdenum. , 2015 .

[46]  H. J. Lee,et al.  Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2 , 2015, Nature Communications.

[47]  S. Glenzer,et al.  X-ray Thomson scattering in high energy density plasmas , 2009 .

[48]  D. Dolan,et al.  Compression Freezing Kinetics of Water to Ice VII. , 2017, Physical review letters.

[49]  R. Redmer,et al.  Thomson scattering from dense inhomogeneous plasmas. , 2019, Physical review. E.

[50]  T. Toncian,et al.  Development of a 100 J, 10 Hz laser for compression experiments at the High Energy Density instrument at the European XFEL , 2018, High Power Laser Science and Engineering.

[51]  H. Mao,et al.  Nuclear resonant scattering at high pressure and high temperature , 2004 .

[52]  Gilbert W. Collins,et al.  Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa. , 2017, Physical review letters.

[53]  S. Glenzer,et al.  Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions , 2017 .

[54]  E. Syresin,et al.  X-ray photon diagnostics at the European XFEL. , 2019, Journal of synchrotron radiation.

[55]  O. Landen,et al.  X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser. , 2016, The Review of scientific instruments.

[56]  Roger Falcone Felicie Albert Farhat Beg Siegfried Glenze Zuegel Workshop Report: Brightest Light Initiative (March 27-29 2019, OSA Headquarters, Washington, D.C.) , 2020, 2002.09712.

[57]  R. Lindberg,et al.  Demonstration of self-seeding in a hard-X-ray free-electron laser , 2012, Nature Photonics.

[58]  Density fluctuations in molten lithium: inelastic x-ray scattering study , 2000 .

[59]  Gilbert W. Collins,et al.  Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions. , 2012, Physical review letters.

[60]  H. J. Lee,et al.  Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source. , 2018, The Review of scientific instruments.