A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and algT/U activity results in the loss of alginate production.

[1]  K. Mathee,et al.  Co-regulation of β-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa , 2011, Journal of medical microbiology.

[2]  Z. Rehman,et al.  Membrane Topology of Outer Membrane Protein AlgE, Which Is Required for Alginate Production in Pseudomonas aeruginosa , 2010, Applied and Environmental Microbiology.

[3]  R. Sauer,et al.  Control of Pseudomonas aeruginosa AlgW protease cleavage of MucA by peptide signals and MucB , 2009, Molecular microbiology.

[4]  G. Pier,et al.  ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. , 2008, Microbiology.

[5]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[6]  Dongru Qiu,et al.  Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa , 2007, Proceedings of the National Academy of Sciences.

[7]  B. Rehm,et al.  Bacterial alginates: from biosynthesis to applications , 2006, Biotechnology Letters.

[8]  Torsten Schwede,et al.  The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling , 2006, Bioinform..

[9]  C. Koh,et al.  Pseudomonas aeruginosa AmpR Is a Global Transcriptional Factor That Regulates Expression of AmpC and PoxB β-Lactamases, Proteases, Quorum Sensing, and Other Virulence Factors , 2005, Antimicrobial Agents and Chemotherapy.

[10]  M. Chandler,et al.  Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. , 2005, Microbiology.

[11]  Dean Cheng,et al.  Pseudomonas aeruginosa Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation , 2004, Nucleic Acids Res..

[12]  T. Jukes Transitions, transversions, and the molecular evolutionary clock , 2005, Journal of Molecular Evolution.

[13]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[14]  Torsten Schwede,et al.  The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models , 2004, Nucleic Acids Res..

[15]  D. Wozniak,et al.  Controlof Pseudomonas aeruginosa algZ Expression bythe Alternative Sigma FactorAlgT , 2003, Journal of bacteriology.

[16]  A. Kharazmi,et al.  Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. , 2003, Journal of medical microbiology.

[17]  Manuel C. Peitsch,et al.  SWISS-MODEL: an automated protein homology-modeling server , 2003, Nucleic Acids Res..

[18]  C. Gross,et al.  Crystal Structure of Escherichia coli σE with the Cytoplasmic Domain of Its Anti-σ RseA , 2003 .

[19]  C. Gross,et al.  Crystal structure of Escherichia coli sigmaE with the cytoplasmic domain of its anti-sigma RseA. , 2003, Molecular cell.

[20]  A. Kharazmi,et al.  Role of exopolysaccharide in biofilm matrix formation The alginate paradigm , 2002 .

[21]  Nicole E. Baldwin,et al.  Isolation and characterization of mutations in region 1.2 of Escherichia coliσ70 , 2001, Molecular microbiology.

[22]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[23]  J. Peng,et al.  Substrate recognition through a PDZ domain in tail-specific protease. , 2000, Biochemistry.

[24]  F. O'Gara,et al.  Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. , 2000, Molecular plant-microbe interactions : MPMI.

[25]  J. Mattick,et al.  A minimal tiling path cosmid library for functional analysis of the Pseudomonas aeruginosa PAO1 genome. , 2000, Microbial & comparative genomics.

[26]  D. Wozniak,et al.  Negative Control of Flagellum Synthesis in Pseudomonas aeruginosa Is Modulated by the Alternative Sigma Factor AlgT (AlgU) , 1999, Journal of bacteriology.

[27]  S. Molin,et al.  Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. , 1999, Microbiology.

[28]  V. Kapatral,et al.  Cellular function of elastase in Pseudomonas aeruginosa: role in the cleavage of nucleoside diphosphate kinase and in alginate synthesis , 1998, Molecular microbiology.

[29]  D. Ohman,et al.  Deletion of algK in Mucoid Pseudomonas aeruginosa Blocks Alginate Polymer Formation and Results in Uronic Acid Secretion , 1998, Journal of bacteriology.

[30]  N. Shimamoto,et al.  Regions of the Escherichia coli primary sigma factor σ70 that are involved in interaction with RNA polymerase core enzyme , 1997, Genes to cells : devoted to molecular & cellular mechanisms.

[31]  V. Deretic,et al.  Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity. , 1997, Microbiology.

[32]  E. Ujack,et al.  Positive correlation of algD transcription to lasB and lasA transcription by populations of Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis , 1997, Infection and immunity.

[33]  Francisco Melo,et al.  ANOLEA: A WWW Server to Assess Protein Structures , 1997, ISMB.

[34]  K. Mathee,et al.  Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN) , 1997, Journal of bacteriology.

[35]  N. Høiby,et al.  Pseudomonas aeruginosa isolates from patients with cystic fibrosis have different beta-lactamase expression phenotypes but are homogeneous in the ampC-ampR genetic region , 1997, Antimicrobial agents and chemotherapy.

[36]  N. Høiby,et al.  Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis , 1997, Pediatric pulmonology.

[37]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[38]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[39]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[40]  D A Kendall,et al.  The Amino-terminal Charge and Core Region Hydrophobicity Interdependently Contribute to the Function of Signal Sequences* , 1996, The Journal of Biological Chemistry.

[41]  V. Deretic,et al.  Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis , 1996, Journal of bacteriology.

[42]  A. Chakrabarty,et al.  Sigma factor-anti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA , 1996, Journal of bacteriology.

[43]  Q. Gu,et al.  Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA , 1996, Journal of bacteriology.

[44]  V. Deretic,et al.  Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA , 1996, Journal of bacteriology.

[45]  Alan E. Mark,et al.  The GROMOS96 Manual and User Guide , 1996 .

[46]  S F Altschul,et al.  Local alignment statistics. , 1996, Methods in enzymology.

[47]  K. Biemann,et al.  C‐terminal specific protein degradation: Activity and substrate specificity of the Tsp protease , 1995, Protein science : a publication of the Protein Society.

[48]  Manuel C. Peitsch,et al.  Protein Modeling by E-mail , 1995, Bio/Technology.

[49]  K. Makino,et al.  The rpoE gene of Escherichia coli, which encodes sigma E, is essential for bacterial growth at high temperature , 1995, Journal of bacteriology.

[50]  C. Georgopoulos,et al.  The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. , 1995, The EMBO journal.

[51]  K. Rudd,et al.  rpoE, the gene encoding the second heat‐shock sigma factor, sigma E, in Escherichia coli. , 1995, The EMBO journal.

[52]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[53]  D. Ohman,et al.  Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation , 1994, Journal of bacteriology.

[54]  D. Martin,et al.  Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response , 1994, Journal of bacteriology.

[55]  D. Wozniak,et al.  Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT , 1994, Journal of bacteriology.

[56]  J. Tommassen,et al.  Overexpression of algE in Escherichia coli: subcellular localization, purification, and ion channel properties , 1994, Journal of bacteriology.

[57]  D. Martin,et al.  Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy , 1994, Journal of bacteriology.

[58]  D. Martin,et al.  Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors , 1994, Journal of bacteriology.

[59]  B. Rehm,et al.  Antibody response of rabbits and cystic fibrosis patients to an alginate-specific outer membrane protein of a mucoid strain of Pseudomonas aeruginosa. , 1994, Microbial pathogenesis.

[60]  D. Wozniak,et al.  Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene , 1993, Journal of bacteriology.

[61]  J. Goldberg,et al.  A mutation in algN permits trans activation of alginate production by algT in Pseudomonas species , 1993, Journal of bacteriology.

[62]  D. Martin,et al.  Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor , 1993, Journal of bacteriology.

[63]  D. Martin,et al.  Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Gribskov,et al.  The sigma 70 family: sequence conservation and evolutionary relationships , 1992, Journal of bacteriology.

[65]  T. Dahnke,et al.  Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators , 1992, Molecular microbiology.

[66]  R. Sauer,et al.  Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[67]  S. Pedersen,et al.  Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. , 1992, APMIS. Supplementum.

[68]  A. Chakrabarty,et al.  Nucleotide sequence and expression of the algE gene involved in alginate biosynthesis by Pseudomonas aeruginosa. , 1991, Gene.

[69]  Y. Yamamoto,et al.  Cloning, mapping, and characterization of the Escherichia coli prc gene, which is involved in C-terminal processing of penicillin-binding protein 3 , 1991, Journal of bacteriology.

[70]  J. Costerton,et al.  Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm , 1991, Antimicrobial Agents and Chemotherapy.

[71]  C. Nast,et al.  Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa , 1991, Infection and immunity.

[72]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[73]  C. Chitnis,et al.  Cloning of Pseudomonas aeruginosa algG, which controls alginate structure , 1990, Journal of bacteriology.

[74]  U. Winkler,et al.  An outer membrane protein characteristic of mucoid strains of Pseudomonas aeruginosa. , 1990, FEMS microbiology letters.

[75]  H. Nagasawa,et al.  Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli , 1989, Journal of bacteriology.

[76]  H. Nagasawa,et al.  Genetic analyses of processing involving C-terminal cleavage in penicillin-binding protein 3 of Escherichia coli , 1989, Journal of bacteriology.

[77]  R. Burgess,et al.  Characterization of the Escherichia coli transcription factor sigma 70: localization of a region involved in the interaction with core RNA polymerase. , 1989, Biochemistry.

[78]  A. Kharazmi Interactions of Pseudomonas aeruginosa proteases with the cells of the immune system. , 1989, Antibiotics and chemotherapy.

[79]  J. Roberts,et al.  Gene Q antiterminator proteins of Escherichia coli phages 82 and lambda suppress pausing by RNA polymerase at a rho-dependent terminator and at other sites. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[80]  N. Minton,et al.  Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation , 1988 .

[81]  D. Ohman,et al.  Use of a gene replacement cosmid vector for cloning alginate conversion genes from mucoid and nonmucoid Pseudomonas aeruginosa strains: algS controls expression of algT , 1988, Journal of bacteriology.

[82]  D. Ohman,et al.  Cloning of genes from mucoid Pseudomonas aeruginosa which control spontaneous conversion to the alginate production phenotype , 1988, Journal of bacteriology.

[83]  M. Chamberlin,et al.  Structure and function of bacterial sigma factors. , 1988, Annual review of biochemistry.

[84]  H. Kamata,et al.  Genes encoding two lipoproteins in the leuS-dacA region of the Escherichia coli chromosome , 1987, Journal of bacteriology.

[85]  J. Goldberg,et al.  Construction and characterization of Pseudomonas aeruginosa algB mutants: role of algB in high-level production of alginate , 1987, Journal of bacteriology.

[86]  J. Govan,et al.  Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis. , 1986, Microbiological sciences.

[87]  T. Finan,et al.  Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes , 1986, Journal of bacteriology.

[88]  V. Korolik,et al.  Transfer of a chromosomal locus responsible for mucoid colony morphology in Pseudomonas aeruginosa isolated from cystic fibrosis patients to P. aeruginosa PAO. , 1986, Journal of medical microbiology.

[89]  A. Darzins,et al.  Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa , 1984, Journal of bacteriology.

[90]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[91]  A. Chakrabarty,et al.  Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate , 1981, Infection and immunity.

[92]  J. Fyfe,et al.  Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. , 1980, Journal of general microbiology.

[93]  D. Helinski,et al.  Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[94]  F. Bolivar,et al.  Plasmids of Escherichia coli as cloning vectors. , 1979, Methods in enzymology.

[95]  J. Fyfe,et al.  Mucoid Pseudomonas aeruginosa and cystic fibrosis: resistance of the mucoid from to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. , 1978, The Journal of antimicrobial chemotherapy.

[96]  A. Linker,et al.  Production and Characterization of the Slime Polysaccharide of Pseudomonas aeruginosa , 1973, Journal of bacteriology.

[97]  C. Filip,et al.  Solubilization of the Cytoplasmic Membrane of Escherichia coli by the Ionic Detergent Sodium-Lauryl Sarcosinate , 1973, Journal of bacteriology.

[98]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[99]  H. Boyer,et al.  A complementation analysis of the restriction and modification of DNA in Escherichia coli. , 1969, Journal of molecular biology.

[100]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[101]  Toshimitsu Hoshino,et al.  Pseudomonas aeruginosa PAO , 2022 .