Wear-related phenomena in advanced materials

The title of this editorial reflects an effort in creating a unique research forum, to harbor fundamental as well as review articles, meeting the forefront of this scientific field. The Guest Editors sought to attract articles on friction, wear, surface properties, and the development of sufficient procedures, to arrest wear progression as well as to indicate mechanisms to prolong the effectiveness of the implicated materials. In these terms it was exciting and rewarding to embrace related papers of scientists from around the world. The concept of wear-related phenomena in advanced materials, along with a short introduction on the subjects, addressed by the accepted papers, will be presented in the following paragraphs

[1]  Chee Kai Chua,et al.  Rapid prototyping and tooling techniques: a review of applications for rapid investment casting , 2005 .

[2]  Chilukuri Ramesh,et al.  Friction and wear behavior of laser-sintered iron–silicon carbide composites , 2009 .

[3]  Yunn-Shiuan Liao,et al.  Mechanism of minimum quantity lubrication in high-speed milling of hardened steel , 2007 .

[4]  J.-P. Kruth,et al.  A study of degradation of laser‐sintered moulds using wear tests , 2009 .

[5]  N. Murugan,et al.  A Comparative Study on the Microstructures and Mechanical Properties of Al 6061 Alloy and the MMC Al 6061/TiB2/12P , 2010 .

[6]  J. Torralba,et al.  Effect of Austempering Conditions on the Microstructure and Tensile Properties of Low Alloyed Sintered Steel , 2010 .

[7]  R. Paretkar,et al.  Study of wear mechanisms in copper-based SiCp (20% by volume) reinforced composite , 2008 .

[8]  F. F. Lange,et al.  The interaction of a crack front with a second-phase dispersion , 1970 .

[9]  N. Michailidis,et al.  Deformation and energy absorption properties of powder-metallurgy produced Al foams , 2011 .

[10]  A. Roy Choudhury,et al.  Direct selective laser sintering of iron-graphite powder mixture , 2003 .

[11]  Erdem Ozturk,et al.  MODELING OF 5-AXIS MILLING PROCESSES , 2007 .

[12]  N Verdonschot,et al.  Frictional heating of total hip implants. Part 1: measurements in patients. , 2001, Journal of biomechanics.

[13]  A. K. Sood,et al.  Parametric appraisal of mechanical property of fused deposition modelling processed parts , 2010 .

[14]  B. S. Murty,et al.  Tensile and wear behaviour of in situ Al-7Si/TiB2 particulate composites , 2008 .

[15]  A. G. Kostornov,et al.  Sintered antifriction materials , 1969 .

[16]  E. Sachlos,et al.  Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. , 2003, European cells & materials.

[17]  L. A. Dobrzański,et al.  Wear of PVD-coated solid carbide end mills in dry high-speed cutting , 2004 .

[18]  Yusuf Altintas,et al.  Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design , 2000 .

[19]  K. Bouzakis,et al.  Optimization of wet micro-blasting on PVD films with various grain materials for improving the coated tools’ cutting performance , 2011 .

[20]  K. Bouzakis,et al.  Effect of PVD films wet micro-blasting by various Al2O3 grain sizes on the wear behaviour of coated tools , 2011 .

[21]  Z. M. Wang,et al.  The machinability of nickel-based alloys: a review , 1999 .

[22]  Alexander Tsouknidas,et al.  FEM assisted evaluation of PMMA and Ti6Al4V as materials for cranioplasty resulting mechanical behaviour and the neurocranial protection. , 2011, Bio-medical materials and engineering.

[23]  Xiangfa Liu,et al.  In situ TiB2 particulate reinforced near eutectic Al–Si alloy composites , 2002 .

[24]  R. Bidulský,et al.  Wear Resistance of chromium pre-alloyed sintered steels , 2009 .

[25]  Wissenschaftliche Gessellschaft für Produktionstechnik Production engineering : research and development , 2007 .

[26]  Dirk Biermann,et al.  Manufacturing of dies from hardened tool steels by 3-axis micromilling , 2011, Prod. Eng..

[27]  V. Zinkann,et al.  Hochleistungswerkstoffe erfordern angepasste Bearbeitungstechnologien , 1997 .

[28]  G. Rizvi,et al.  Effect of processing conditions on the bonding quality of FDM polymer filaments , 2008 .

[29]  J. Winder,et al.  Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. , 2005, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[30]  S. H. Goods,et al.  Overview No. 1: The nucleation of cavities by plastic deformation , 1979 .

[31]  S. Xie,et al.  DYNAMIC RECOVERY AND DYNAMIC RECRYSTALLIZATION OF 7005 ALUMINIUM ALLOY DURING HOT COMPRESSION , 2009 .

[32]  Andrzej Rosochowski,et al.  Rapid tooling: the state of the art , 2000 .

[33]  R. K. Ohdar,et al.  Prediction and analysis of sliding wear performance of fused deposition modelling-processed ABS plastic parts , 2010 .

[34]  I. Schruff,et al.  Sprühkompaktierte Hochleistungs-Werkzeugstähle∗ , 2004 .

[35]  H. Danninger,et al.  THERMOPHYSICAL PROPERTIES OF SINTERED STEELS: EFFECT OF POROSITY , 2011 .

[36]  M. Scherge,et al.  An energetic approach to friction, wear and temperature , 2004 .

[37]  Wen-Fung Wang Effect of tin addition on the microstructure development and corrosion resistance of sintered 304L stainless steels , 1999 .

[38]  I. Hutchings,et al.  Wear resistance of amorphous alloys and related materials , 2002 .

[39]  Effect of surface temperature rise on friction characteristics for sliding speed under unlubricated condition , 2010 .

[40]  Abdolreza Simchi,et al.  Effects of laser sintering processing parameters on the microstructure and densification of iron powder , 2003 .

[41]  Berend Denkena,et al.  Reduction of wear induced surface zone effects during hard turning by means of new tool geometries , 2008, Prod. Eng..

[42]  A. G. Kostornov,et al.  Structurization in sintering of antifriction powder materials based on iron-copper alloys , 2007 .

[43]  M. M. Barash,et al.  Cutting mechanism during machining of hardened steel , 1987 .

[44]  A. Kennedy,et al.  The microstructure and mechanical properties of TiC and TiB2-reinforced cast metal matrix composites , 1999 .

[45]  Crack Arrest Modes of a Transverse Crack Going Through a Longitudinal Crack or a Hole , 1981 .

[46]  A. Sarkar Friction and wear , 1980 .

[47]  Seh Chun Lim,et al.  Overview no. 55 Wear-Mechanism maps , 1987 .

[48]  Peter I. P. Kalmus Rutherford and I , 1997 .

[49]  K. Sivaprasad,et al.  Sliding wear behaviour of Al 6063/TiB2 in situ composites at elevated temperatures , 2009 .

[50]  Jean-Pierre Kruth,et al.  Wear Performance of SLS/SLM Materials , 2008 .

[51]  N. Michailidis,et al.  Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material , 2011 .

[52]  V. N. Antsiferov,et al.  Effect of pores on fracture of iron , 1989 .

[53]  Volker Uhlenwinkel,et al.  Sprühkompaktierte hochlegierte Werkzeugstähle – Herstellung und Eigenschaften∗ , 2005 .

[54]  T. R. Reid,et al.  The Chip , 1984 .

[55]  Hans Kurt Tönshoff,et al.  Cutting of Hardened Steel , 2000 .

[56]  M. Ueda,et al.  Recovery of aluminum from oxide particles in aluminum dross using AlF3–NaF–BaCl2 molten salt , 2005 .

[57]  N. Ingelström,et al.  THE INFLUENCE OF POROSITY AND CARBON CONTENT ON THE FRACTURE TOUGHNESS OF SOME SINTERED STEELS , 1975 .

[58]  Siegfried Fouvry,et al.  Fretting-Wear and Fretting-Fatigue: Relation Through a Mapping Concept , 2000 .

[59]  J. A. Pask Structural ceramics , 1989 .

[60]  W. Marsden I and J , 2012 .

[61]  Mitsuo Niinomi,et al.  Mechanical biocompatibilities of titanium alloys for biomedical applications. , 2008, Journal of the mechanical behavior of biomedical materials.

[62]  Fritz Klocke,et al.  Present Situation and Future Trends in Modelling of Machining Operations Progress Report of the CIRP Working Group ‘Modelling of Machining Operations’ , 1998 .

[63]  Duncan Dowson,et al.  The role of counterface imperfections in the wear of polyethylene , 1987 .

[64]  G. Cuevaa,et al.  Wear resistance of cast irons used in brake disc rotors , 2003 .

[65]  H. S. Cheng,et al.  Counterface topographical effects on the wear of polyetheretherketone and a polyetheretherketone-carbon fiber composite , 1991 .

[66]  R. Bidulský,et al.  Wear Mechanism of Chromium Pre-Alloyed Sintered Steel , 2009 .

[67]  F. Klocke,et al.  Consolidation phenomena in laser and powder-bed based layered manufacturing , 2007 .

[68]  P. Beiss,et al.  Fracture toughness of PM alloy steels , 2005 .

[69]  B. S. Murty,et al.  Sliding wear behaviour of T6 treated A356–TiB2 in-situ composites , 2009 .

[70]  M. K. Premkumar,et al.  Emerging technologies for the in-situ production of MMCs , 1993 .

[71]  Abdolreza Simchi,et al.  Direct metal laser sintering : Material considerations and mechanisms of particle : Rand tooling of powdered metal parts , 2001 .

[72]  V. Kevorkijan Evaluating the aluminum content of pressed dross , 2002 .

[73]  H. Vetters,et al.  Das Primärgefüge sprühkompaktierter Stähle , 2001, HTM Journal of Heat Treatment and Materials.

[74]  V. Zinkann,et al.  Hochgeschwindigkeitsbearbeitung ändert die Spanbildung , 1999 .

[75]  Y. Ragozin,et al.  Method of accelerated fracture toughness KIc testing of metallic materials , 1984 .

[76]  Uwe Glatzel,et al.  Determination of the temperature rise within UHMWPE tibial components during tribological loading. , 2010, Acta biomaterialia.

[77]  K. Rane,et al.  Effect of KBF 4 and K 2 TiF 6 on precipitation kinetics of TiB 2 in aluminium matrix composite , 2011 .

[78]  Norihiko Narutaki,et al.  High-speed Machining of Inconel 718 with Ceramic Tools , 1993 .

[79]  Berend Denkena,et al.  Advancing Cutting Technology , 2003 .

[80]  Rc Bill Review of factors that influence fretting wear , 1982 .

[81]  J. Archard Contact and Rubbing of Flat Surfaces , 1953 .

[82]  Jie Luo,et al.  A novel rapid route for in situ synthesizing TiB–TiB2 composites , 2009 .

[83]  Ryutaro Tanaka,et al.  Cutting performance of PVD-coated carbide and CBN tools in hardmilling , 2011 .

[84]  V. N. Antsiferov,et al.  Effect of heat treatment on the crack resistance of powder steel SP50Kh3NM , 1991 .

[85]  E. Whittaker,et al.  Friction and Wear , 1947, Nature.

[86]  Rajendra Singh,et al.  Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations , 2008 .

[87]  O. Manfredi,et al.  Characterizing the physical and chemical properties of aluminum dross , 1997 .

[88]  Randall M. German,et al.  Review: liquid phase sintering , 2009 .

[89]  Steven Y. Liang,et al.  Modeling of Ball-End Milling Forces with Cutter Axis Inclination , 2000 .

[90]  H. Yamagata Dynamic recrystallization and dynamic recovery in pure aluminum at 583K , 1995 .

[91]  P. Schaaff The role of fretting damage in total hip arthroplasty with modular design hip joints -evaluation of retrieval studies and experimental simulation methods. , 2008, Journal of applied biomaterials & biomechanics : JABB.

[92]  T. I. El-Wardany,et al.  High-Speed Milling of Dies and Molds in Their Hardened State , 1997 .

[93]  Y. Qian,et al.  A convenient solid-state reaction route to nanocrystalline TiB2 , 2004 .

[94]  R. K. Ohdar,et al.  Parametric appraisal of fused deposition modelling process using the grey Taguchi method , 2010 .

[95]  Y. Berthier,et al.  Fretting fatigue and fretting wear , 1989 .

[96]  Prosper Matković,et al.  Physical Metallurgy I , 2009 .

[97]  N Verdonschot,et al.  Frictional heating of total hip implants. Part 2: finite element study. , 2001, Journal of biomechanics.

[98]  B. C. Pai,et al.  Fluidity of aluminum alloys and composites: A review , 2008 .

[99]  X. Q Yu,et al.  Frictional characteristics of mechanical seals with a laser-textured seal face , 2002 .

[100]  T. Yue,et al.  Microstructure and wear properties of laser surface-cladded Mo–WC MMC on AA6061 aluminum alloy , 2001 .

[101]  H. Danninger,et al.  Defining the pores in PM components , 2010 .

[102]  Minna Kellomäki,et al.  A review of rapid prototyping techniques for tissue engineering purposes , 2008, Annals of medicine.

[103]  David Roth,et al.  Dross Processing Technology , 2009 .

[104]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[105]  Kenan TÜfekci,et al.  Friction and wear properties of cu and fe-based P/M bearing materials , 2006 .

[106]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[107]  V. Sikka,et al.  Dross formation during remelting of aluminum 5182 remelt secondary ingot (RSI) , 2003 .

[108]  J. P. Li,et al.  The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants. , 2010, Journal of biomedical materials research. Part A.

[109]  A. M. Taylor,et al.  Evaluation of the fretting corrosion behavior of the proximal pad taper of a modular hip design , 1999 .

[110]  E. Badisch,et al.  Wear Mechanisms at High Temperatures. Part 1: Wear Mechanisms of Different Fe-Based Alloys at Elevated Temperatures , 2009 .

[111]  G. Lu,et al.  Mechanical Properties of Porous Materials , 1999 .

[112]  Izhak Etsion,et al.  Different aspects of the role of wear debris in fretting wear , 2002 .

[113]  V. V. Skorokhod,et al.  Mechanical resonance spectroscopy of interparticle boundaries in high-density iron powder compacts , 2008 .

[114]  M. Alauddin,et al.  End-Milling Machinability of Inconel 718 , 1996 .

[115]  K. Bouzakis,et al.  Experimental and FEM-supported investigation of wet ceramic clay extrusion for the determination of stress distributions on the applied tools’ surfaces , 2008 .

[116]  B. H. Lee,et al.  Optimization of rapid prototyping parameters for production of flexible ABS object , 2005 .

[117]  Hari Singh Nalwa Materials and processing , 2001 .

[118]  Richard E. DeVor,et al.  Mechanistic Modeling of the Ball End Milling Process for Multi-Axis Machining of Free-Form Surfaces , 2001 .

[119]  X. Bian,et al.  Microstructure and mechanical properties of in situ synthesized (TiB2 + Al2O3)/Al–Cu composites , 2007 .

[120]  S. Seshadri,et al.  A survey of aspects of wear of metals , 1991 .

[121]  Abdullah Kurt,et al.  The effects of the feed rate on the cutting tool stresses in machining of Inconel 718 , 2008 .

[122]  Jorge H.O. Seabra,et al.  Friction torque in grease lubricated thrust ball bearings , 2011 .

[123]  Marek Balazinski,et al.  Improvement of Tool Life through Variable Feed Milling of Inconel 600 , 1995 .

[124]  David K. Aspinwall,et al.  High speed end milling of hardened AISI D2 tool steel (∼58 HRC) , 2002 .

[125]  B. Weiss,et al.  Gigacycle fatigue response of tool steels produced by powder metallurgy compared to ingot metallurgy tool steels , 2010 .

[126]  M. Szymiczek,et al.  Influence of temperature on friction coefficient of low density polyethylene , 2008 .

[127]  Colleen L Flanagan,et al.  Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. , 2005, Biomaterials.

[128]  D. Biermann,et al.  Machining of High Strength Light Weight Alloys for Engine Applications , 2007 .

[129]  F. F. Ling Friction and lubrication in metal processing , 1966 .

[130]  Li Lu,et al.  Improvement in mechanical properties of in-situ Al–TiB2 composite by incorporation of carbon , 2003 .

[131]  Kin Chuen Hui Solid sweeping in image space—application in NC simulation , 2005, The Visual Computer.

[132]  Robert E. Schafrik,et al.  Superalloy Technology - A Perspective on Critical Innovations for Turbine Engines , 2008 .

[133]  O. N. Romaniv,et al.  The kinetics and mechanism of fatigue crack growth in iron , 1981 .

[134]  Gideon Levy,et al.  RAPID MANUFACTURING AND RAPID TOOLING WITH LAYER MANUFACTURING (LM) TECHNOLOGIES, STATE OF THE ART AND FUTURE PERSPECTIVES , 2003 .

[135]  H. Danninger,et al.  Wear Mechanisms at High Temperatures: Part 2: Temperature Effect on Wear Mechanisms in the Erosion Test , 2009 .

[136]  Yusuf Altintas,et al.  Mechanics and Dynamics of Ball End Milling , 1998 .