Dimension reduction near periodic orbits of hybrid systems

When the Poincaré map associated with a periodic orbit of a hybrid dynamical system has constant-rank iterates, we demonstrate the existence of a constant-dimensional invariant subsystem near the orbit which attracts all nearby trajectories in finite time. This result shows that the long-term behavior of a hybrid model with a large number of degrees-of-freedom may be governed by a low-dimensional smooth dynamical system. The appearance of such simplified models enables the translation of analytical tools from smooth systems—such as Floquet theory—to the hybrid setting and provides a bridge between the efforts of biologists and engineers studying legged locomotion.

[1]  Jonathan E. Clark,et al.  iSprawl: Design and Tuning for High-speed Autonomous Open-loop Running , 2006, Int. J. Robotics Res..

[2]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[3]  Aaron D. Ames,et al.  Rank properties of poincare maps for hybrid systems with applications to bipedal walking , 2010, HSCC '10.

[4]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[5]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[6]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[7]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[8]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[9]  P. Holmes,et al.  The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model , 1982, Journal of mathematical biology.

[10]  Leonid B. Freidovich,et al.  Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom , 2010, IEEE Transactions on Automatic Control.

[11]  Daniel E. Koditschek,et al.  Gait Transitions for Quasi-static Hexapedal Locomotion on Level Ground , 2009, ISRR.

[12]  J. Guckenheimer,et al.  Isochrons and phaseless sets , 1975, Journal of mathematical biology.

[13]  S. Grillner Neurobiological bases of rhythmic motor acts in vertebrates. , 1985, Science.

[14]  Philip Holmes,et al.  A Simply Stabilized Running Model , 2005, SIAM Rev..

[15]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[16]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[17]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[18]  Daniel E. Koditschek,et al.  Phase Regulation of Decentralized Cyclic Robotic Systems , 2002, Int. J. Robotics Res..

[19]  S. Shankar Sastry,et al.  On the Geometric Reduction of Controlled Three-Dimensional Bipedal Robotic Walkers , 2007 .

[20]  Shai Revzen,et al.  Neuromechanical Control Architectures of Arthropod Locomotion , 2009 .

[21]  P. Holmes,et al.  Steering by transient destabilization in piecewise-holonomic models of legged locomotion , 2008 .

[22]  Karl Henrik Johansson,et al.  Towards a Geometric Theory of Hybrid Systems , 2000, HSCC.

[23]  Shuuji Kajita,et al.  Legged Robots , 2008, Springer Handbook of Robotics.

[24]  Jessy W. Grizzle,et al.  Hybrid Invariant Manifolds in Systems With Impulse Effects With Application to Periodic Locomotion in Bipedal Robots , 2009, IEEE Transactions on Automatic Control.

[25]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[26]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[27]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[28]  M. Golubitsky,et al.  Symmetry in locomotor central pattern generators and animal gaits , 1999, Nature.

[29]  S. Shankar Sastry,et al.  Numerical integration of hybrid dynamical systems via domain relaxation , 2011, IEEE Conference on Decision and Control and European Control Conference.

[30]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[31]  C. Desoer,et al.  Linear System Theory , 1963 .

[32]  G. Floquet,et al.  Sur les équations différentielles linéaires à coefficients périodiques , 1883 .

[33]  Lena H Ting,et al.  A limited set of muscle synergies for force control during a postural task. , 2005, Journal of neurophysiology.

[34]  Jessy W. Grizzle,et al.  The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper , 2009, IEEE Transactions on Automatic Control.