A fast boundary element method for the two-dimensional Helmholtz Equation

Abstract In this paper, we present a fast method for solving boundary integral equations arising from the exterior Dirichlet problem for the two-dimensional Helmholtz equation. This method combines a quadrature method for discretizing the boundary integral equations with a preconditioned iterative method for solving the resulting dense, nonsymmetric linear systems. Using this method, a polynomial rate of convergence can be obtained by performing a finite number of iterations, which yields high computational efficiency. Various numerical examples are presented.

[1]  Francis X. Canning Sparse Approximation for Solving Integral Equations with Oscillatory Kernels , 1992, SIAM J. Sci. Comput..

[2]  D. Greenspan,et al.  A numerical method for the exterior Dirichlet problem for the reduced wave equation , 1966 .

[3]  F. J. Rizzo,et al.  A unified boundary integral equation method for a class of second order elliptic boundary value problems , 1984, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[4]  Peter Werner,et al.  Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung , 1965 .

[5]  R. Leis,et al.  Zur Dirichletschen Randwertaufgabe des Außenraumes der Schwingungsgleichung , 1965 .

[6]  H. Schippers,et al.  Multigrid methods for boundary integral equations , 1985 .

[7]  Piet Hemker,et al.  Multiple grid methods for the solution of Fredholm integral equations of the second kind , 1979 .

[8]  Chen Ke,et al.  Conjugate gradient method for second kind integral equations — applications to the exterior acoustic problem , 1989 .

[9]  R. Kress,et al.  On the condition number of boundary integral operators for the exterior Dirichlet problem for the Helmholtz equation , 1983 .

[10]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[11]  Erich Martensen,et al.  Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen , 1963 .

[12]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[13]  Ian H. Sloan,et al.  Error analysis of boundary integral methods , 1992, Acta Numerica.

[14]  Wolfgang L. Wendland,et al.  Asymptotic Accuracy and Convergence for Point Collocation Methods , 1985 .

[15]  K. Atkinson Iterative variants of the Nyström method for the numerical solution of integral equations , 1974 .

[16]  Jean-Paul Berrut,et al.  Equivalence of Nyström's method and Fourier methods for the numerical solution of Fredholm integral equations , 1987 .

[17]  Francis X. Canning Sparse matrix approximation to an integral equation of scattering , 1990 .

[18]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  Ben T. Zinn,et al.  Predicting the Acoustics of Arbitrarily Shaped Bodies Using an Integral Approach , 1977 .

[20]  W. Wendland Boundary Element Methods and Their Asymptotic Convergence , 1983 .

[21]  Lothar Reichel,et al.  Fast solution methods for fredholm integral equations of the second kind , 1990 .

[22]  Werner Goldsmith,et al.  Diffraction of Steady Acoustic Waves by Surfaces of Arbitrary Shape , 1963 .

[23]  Kendall E. Atkinson,et al.  Iterative Solution of Linear Systems Arising from the Boundary Integral Method , 1992, SIAM J. Sci. Comput..