Numerical simulation of oxidation processes in a cross-flow around tube bundles

An oxidation process is simulated for a bundle of metal tubes in a cross-flow. A fluid flow is governed by the incompressible Navier-Stokes equations. To describe the transport of oxygen, the corresponding convection-diffusion equation is applied. The key point of the model is related to the description of oxidation processes taking into account the growth of a thin oxide film in the quasi-stationary approximation. Mathematical modeling of oxidant transport in a tube bundle is carried out in the 2D approximation. The numerical algorithm employed in the work is based on the finite-element discretization in space and the fully implicit discretization in time. The tube rows of a bundle can be either in-line or staggered in the direction of the fluid flow velocity. The growth of the oxide film on tube walls is predicted for various bundle structures using the developed oxidation model.

[1]  Tahseen Ahmad Tahseen,et al.  An overview on thermal and fluid flow characteristics in a plain plate finned and un-finned tube banks heat exchanger , 2015 .

[2]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[3]  B. Mavko,et al.  Heat Transfer Conditions in Flow Across a Bundle of Cylindrical and Ellipsoidal Tubes , 2006 .

[4]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[5]  T. Nishimura,et al.  Experimental Validation of Numerical Analysis of Flow across Tube Banks for Laminar Flow , 1991 .

[6]  P. Jackson,et al.  Turbulence Modeling Applied to Flow Through a Staggered Tube Bundle , 2010 .

[7]  Mark F. Tachie,et al.  Experimental study of turbulent cross-flow in a staggered tube bundle using particle image velocimetry , 2007 .

[8]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[9]  I. M. Mishra,et al.  Numerical simulation and analysis of fluid flow hydrodynamics through a structured array of circular cylinders forming porous medium , 2016 .

[10]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[11]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[12]  K. N. Seetharamu,et al.  Finite element simulation of transient laminar flow and heat transfer past an in-line tube bank , 1998 .

[13]  R. Bouard,et al.  Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow , 1977, Journal of Fluid Mechanics.

[14]  M. Khalil Bassiouny,et al.  Modeling of heat transfer for flow across tube banks , 2000 .

[15]  Yang Liu,et al.  Experimental study and large eddy simulation of turbulent flow around tube bundles composed of wavy and circular cylinders , 2010 .

[16]  Scott J. Ormiston,et al.  Analysis of Laminar Forced Convection of Air Crossflow in In-Line Tube Banks with NonSquare Arrangements , 2005 .

[17]  A. Samarskii The Theory of Difference Schemes , 2001 .

[18]  Ng Niels Deen,et al.  Numerical investigation of hydrodynamics and mass transfer for in-line fiber arrays in laminar cross-flow at low Reynolds numbers , 2005 .

[19]  Ernst Hairer,et al.  Numerical methods for evolutionary differential equations , 2010, Math. Comput..

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  D. Young High Temperature Oxidation and Corrosion of Metals , 2008 .

[25]  D. Spalding,et al.  A NUMERICAL STUDY OF UNSTEADY FLUID FLOW IN IN-LINE AND STAGGERED TUBE BANKS , 1999 .

[26]  S. Jayavel,et al.  Numerical study of heat transfer and pressure drop for flow past inline and staggered tube bundles , 2009 .

[27]  Ihtesham H. Chowdhury,et al.  Numerical Heat Transfer, Part A: Applications , 2007 .

[28]  Masud Behnia,et al.  Numerical laminar and turbulent fluid flow and heat transfer predictions in tube banks , 1995 .

[29]  R. Shah,et al.  Compact Heat Exchangers , 1990 .

[30]  Goichi Matsui,et al.  PIV measurement of the vertical cross-flow structure over tube bundles , 2004 .

[31]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[32]  D. S. Weaver,et al.  A Flow Visualization Study of a Square Array of Tubes in Water Crossflow , 1985 .

[33]  Waqar A. Khan,et al.  Convection heat transfer from tube banks in crossflow: Analytical approach , 2005 .

[34]  Arun S. Mujumdar,et al.  NUMERICAL HEAT TRANSFER: T.M. Shih Hemisphere. New York (1984) XVII+563 pp. , 1985 .

[35]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[36]  C. Balaji,et al.  Unsteady fluid flow and heat transfer over a bank of flat tubes , 2008 .

[37]  M. RahmanM.,et al.  A Numerical Study Laminar Forced Convection of Air for In-Line Bundle of Cylinders Crossflow , 2013 .

[38]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[39]  Y. Q. Wang,et al.  ANALYSIS OF LAMINAR FORCED CONVECTION OF AIR FOR CROSSFLOW IN BANKS OF STAGGERED TUBES , 2000 .

[40]  M. M. Zdravkovich,et al.  Flow Around Circular Cylinders Volume 1: Fundamentals , 1997 .

[41]  J. N. Reddy,et al.  Finite-element analysis of fluid flow and heat transfer for staggered bundles of cylinders in cross flow , 1987 .

[42]  Tim Colonius,et al.  The immersed boundary method: A projection approach , 2007, J. Comput. Phys..

[43]  Zhijie Xu,et al.  A generalized mathematical framework for thermal oxidation kinetics. , 2011, The Journal of chemical physics.