Whale Swarm Algorithm for Function Optimization

Increasing nature-inspired metaheuristic algorithms are applied to solving the real-world optimization problems, as they have some advantages over the classical methods of numerical optimization. This paper proposes a new nature-inspired metaheuristic called Whale Swarm Algorithm for function optimization, which is inspired from the whales’ behavior of communicating with each other via ultrasound for hunting. The proposed Whale Swarm Algorithm is compared with several popular metaheuristic algorithms on comprehensive performance metrics. According to the experimental results, Whale Swarm Algorithm has a quite competitive performance when compared with other algorithms.

[1]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[2]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[3]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[4]  René Thomsen,et al.  Multimodal optimization using crowding-based differential evolution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[5]  Ponnuthurai N. Suganthan,et al.  A Distance-Based Locally Informed Particle Swarm Model for Multimodal Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[6]  Halife Kodaz,et al.  A new hybrid method based on Particle Swarm Optimization, Ant Colony Optimization and 3-Opt algorithms for Traveling Salesman Problem , 2015, Appl. Soft Comput..

[7]  Xiaodong Li,et al.  Efficient differential evolution using speciation for multimodal function optimization , 2005, GECCO '05.

[8]  Nirwan Ansari,et al.  A Genetic Algorithm for Multiprocessor Scheduling , 1994, IEEE Trans. Parallel Distributed Syst..

[9]  R. Steele Optimization , 2005 .

[10]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[11]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[12]  T. D. Biradar,et al.  Review of Nature Inspired Algorithms , 2015 .

[13]  Habiba Drias,et al.  Cooperative Bees Swarm for Solving the Maximum Weighted Satisfiability Problem , 2005, IWANN.

[14]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[15]  Kusum Deep,et al.  A new mutation operator for real coded genetic algorithms , 2007, Appl. Math. Comput..

[16]  Kay Chen Tan,et al.  A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems , 2006, Eur. J. Oper. Res..

[17]  Anyong Qing Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[19]  Siti Zaiton Mohd Hashim,et al.  Memetic multiobjective particle swarm optimization-based radial basis function network for classification problems , 2013, Inf. Sci..

[20]  Larry J. Eshelman,et al.  Foundations of Genetic Algorithms-2 , 1993 .

[21]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[22]  Mitsuo Gen,et al.  Genetic algorithms and engineering optimization , 1999 .

[23]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[24]  Jinghuai Gao,et al.  A New Highly Efficient Differential Evolution Scheme and Its Application to Waveform Inversion , 2014, IEEE Geoscience and Remote Sensing Letters.

[25]  P. John Clarkson,et al.  A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2002, Evolutionary Computation.

[26]  John M. Wilson,et al.  Comparing efficiencies of genetic crossover operators for one machine total weighted tardiness problem , 2008, Appl. Math. Comput..

[27]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[28]  A B Pandit,et al.  Effect of liquid-phase properties on ultrasound intensity and cavitational activity. , 1998, Ultrasonics sonochemistry.

[29]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  G. Syswerda,et al.  Schedule Optimization Using Genetic Algorithms , 1991 .

[31]  Yaochu Jin,et al.  A social learning particle swarm optimization algorithm for scalable optimization , 2015, Inf. Sci..

[32]  Yan Dong,et al.  An improved harmony search based energy-efficient routing algorithm for wireless sensor networks , 2016, Appl. Soft Comput..

[33]  Min Liu,et al.  An agent-assisted QoS-based routing algorithm for wireless sensor networks , 2012, J. Netw. Comput. Appl..

[34]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[35]  L. Booker Foundations of genetic algorithms. 2: L. Darrell Whitley (Ed.), Morgan Kaufmann, San Mateo, CA, 1993, ISBN 1-55860-263-1, 322 pp., US$45.95 , 1994 .