Transpiration of four common understorey plant species according to drought intensity in temperate forests

[1]  J. Houghton,et al.  Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[2]  M. Rebetez,et al.  Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate , 2013 .

[3]  D. Guyon,et al.  Contribution of understory species to total ecosystem aboveground and belowground biomass in temperate Pinus pinaster Ait. forests , 2013 .

[4]  D. Otieno,et al.  Sensitivity of Peatland Herbaceous Vegetation to Vapor Pressure Deficit Influences Net Ecosystem CO2 Exchange , 2012, Wetlands.

[5]  D. Otieno,et al.  Sensitivity of Peatland Herbaceous Vegetation to Vapor Pressure Deficit Influences Net Ecosystem CO2 Exchange , 2012, Wetlands.

[6]  W. Härdtle,et al.  Nitrogen deposition increases susceptibility to drought - experimental evidence with the perennial grass Molinia caerulea (L.) Moench , 2012, Plant and Soil.

[7]  J. Koricheva,et al.  Drought effects on damage by forest insects and pathogens: a meta‐analysis , 2012 .

[8]  Andrei Serafimovich,et al.  Vertical structure of evapotranspiration at a forest site (a case study) , 2011 .

[9]  P. Balandier,et al.  Growth and morphology of three forest understorey species (Calluna vulgaris, Molinia caerulea and Pteridium aquilinum) according to light availability , 2011 .

[10]  N. McDowell,et al.  A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests , 2010 .

[11]  T. Sinclair,et al.  Differential sensitivity of C3 and C4 turfgrass species to increasing atmospheric vapor pressure deficit , 2009 .

[12]  H. Dolman,et al.  Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest , 2009 .

[13]  J. Bonnefond,et al.  Carbon dioxide and energy flux partitioning between the understorey and the overstorey of a maritime pine forest during a year with reduced soil water availability , 2008 .

[14]  C. Vincke,et al.  Water table is a relevant source for water uptake by a Scots pine (Pinus sylvestris L.) stand: Evidences from continuous evapotranspiration and water table monitoring , 2008 .

[15]  P. Balandier,et al.  Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests , 2008 .

[16]  D. Neocleous,et al.  Effects of NaCl stress on red raspberry (Rubus idaeus L. ‘Autumn Bliss’) , 2007 .

[17]  R. Marrs,et al.  Biological Flora of the British Isles: Pteridium aquilinum (L.) Kuhn , 2006 .

[18]  Andrea Vannini,et al.  Interactive effects of drought and pathogens in forest trees , 2006 .

[19]  T. Kolb,et al.  The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought , 2005 .

[20]  D. Whitehead,et al.  Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density. , 2004, The New phytologist.

[21]  T. Ohta,et al.  Hydrometeorological behaviour of pine and larch forests in eastern Siberia , 2004 .

[22]  T. Curt,et al.  Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions , 2003 .

[23]  R. Marrs,et al.  The influence of soil-type, drought and nitrogen addition on interactions between Calluna vulgaris and Deschampsia flexuosa: implications for heathland regeneration , 2003, Plant Ecology.

[24]  H. Spiecker,et al.  Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe , 2003, Trees.

[25]  E. Hogg,et al.  Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects , 2002 .

[26]  H. Rennenberg,et al.  Drought affects the competitive interactions between Fagus sylvatica seedlings and an early successional species, Rubus fruticosus: responses of growth, water status and δ13C composition , 2001 .

[27]  T. Ohta,et al.  Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia , 2001 .

[28]  K. Taylor,et al.  Molinia caerulea (L.) Moench , 2001 .

[29]  Bruce P. Finney,et al.  Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress , 2000, Nature.

[30]  Dennis D. Baldocchi,et al.  Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle , 2000 .

[31]  A. Grelle,et al.  Flux partitioning between understorey and overstorey in a boreal spruce/pine forest determined by the eddy covariance method , 1999 .

[32]  S. Woodin,et al.  Effects of environmental change, including drought, on water use by competing Calluna vulgaris (heather) and Pteridium aquilinum (bracken) , 1999 .

[33]  S. Woodin,et al.  Effects of increased temperature, drought and nitrogen supply on two upland perennials of contrasting functional type: Calluna vulgaris and Pteridium aquilinum , 1999 .

[34]  Stan D. Wullschleger,et al.  A review of whole-plant water use studies in tree. , 1998, Tree physiology.

[35]  Peter D. Blanken,et al.  Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components , 1997 .

[36]  S. Díaz,et al.  Plant functional types and ecosystem function in relation to global change , 1997 .

[37]  N. Breda,et al.  Soil water dynamics in an oak stand , 1995, Plant and Soil.

[38]  N. Breda,et al.  Soil water dynamics in an oak stand , 1995, Plant and Soil.

[39]  R. Aerts,et al.  The relation between above- and belowground biomass allocation patterns and competitive ability , 1991, Oecologia.

[40]  P. Berbigier,et al.  Comparison of two methods for estimating the evaporation of a Pinus pinaster (Ait.) stand: sap flow and energy balance with sensible heat flux measurements by an eddy covariance method , 1991 .

[41]  John H. C. Gash,et al.  Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster Ait.) in Les Landes forest , 1990 .

[42]  D. Hollinger PHOTOSYNTHESIS AND STOMATAL CONDUCTANCE PATTERNS OF TWO FERN SPECIES FROM DIFFERENT FOREST UNDERSTOREYS , 1987 .

[43]  A. Lindroth Seasonal and diurnal variation of energy budget components in coniferous forests , 1985 .

[44]  Richard H. Waring,et al.  Forest Ecosystems: Concepts and Management , 1985 .

[45]  J. Wallace,et al.  Factors affecting stomatal conductance of bracken below a forest canopy , 1984 .

[46]  C. Renard,et al.  Effects of wind velocity on stomatal conductance and consequences of leaf rolling on water uptake in tall fescue , 1983, Biologia Plantarum.

[47]  John Roberts,et al.  Forest transpiration: A conservative hydrological process? , 1983 .

[48]  J. Wallace,et al.  Seasonal changes in leaf area, stomatal and canopy conductances and transpiration from bracken below a forest canopy. , 1980 .

[49]  T. Black,et al.  Evapotranspiration from Douglas fir stands exposed to soil water deficits , 1979 .

[50]  T. Black,et al.  A Simple Diffusion Model of Transpiration Applied to a Thinned Douglas‐Fir Stand , 1978 .

[51]  C. W. Thornthwaite An Approach Toward a Rational Classification of Climate , 1948 .

[52]  J. Richter Central and Northern Europe , 1943 .

[53]  M. Kirkham Chapter 10 – Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range , 2014 .

[54]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[55]  Philippe Balandier,et al.  Architecture, cover and light interception by bramble (Rubus fruticosus): a common understorey weed in temperate forests , 2013 .

[56]  N. Bentsen,et al.  Forest vegetation management in Europe: current practice and future requirements , 2009 .

[57]  Jan W. Hopmans,et al.  Principles of Soil and Plant Water Relations , 2006 .

[58]  P. Balandier,et al.  Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation , 2006 .

[59]  P. Hari,et al.  Eddy covariance measurements of CO2 and sensible and latent heat fluxes during a full year in a boreal pine forest trunk-space , 2005 .

[60]  M. Kirkham Field Capacity, Wilting Point, Available Water, and the Non-Limiting Water Range , 2005 .

[61]  Dumas Que savons-nous de la Fougère aigle ? , 2002 .

[62]  A. Gama,et al.  La Gestion de la végétation accompagnatrice : état et perspective. , 2002 .

[63]  R. Hüttl,et al.  Tree canopy and herb layer transpiration in three Scots pine stands with different stand structures , 1999 .

[64]  A. Granier,et al.  Effets des modifications de la structure du couvert forestier sur le bilan hydrique, l'état hydrique des arbres et la croissance , 1995 .

[65]  Hervé Cochard,et al.  Utilisation d'une chambre de transpiration portable pour l'estimation de l'évapotranspiration d'un sous-bois de pin maritime à molinie (Molinia coerulea (L) Moench) , 1991 .

[66]  A. Daiwara,et al.  Comparison of two methods for estimating the evaporation of a Pinus pinaster (Ait.) stand : sap flow and energy balance with sensible heat flux measurements by an eddy covariance method , 1991 .

[67]  A. Davy Comparative plant ecology: A functional approach to common British species , 1990 .

[68]  J. P. Grime,et al.  Comparative Plant Ecology , 1988, Springer Netherlands.

[69]  D. M. Gates,et al.  Transpiration Resistance of Plants , 1967 .

[70]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.