Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump
暂无分享,去创建一个
A. Its | I. Krasovsky | A. Its | I. Krasovsky
[1] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[2] W. Van Assche,et al. The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .
[3] Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle , 2004, math/0401258.
[4] P. Deift,et al. Asymptotics of the Airy-Kernel Determinant , 2006 .
[5] M. Vanlessen. Universal Behavior for Averages of Characteristic Polynomials at the Origin of the Spectrum , 2003 .
[6] Estelle L. Basor,et al. Asymptotic formulas for Toeplitz determinants , 1978 .
[7] A. Böttcher,et al. Toeplitz matrices and determinants with Fisher-Hartwig symbols , 1985 .
[8] A. S. Fokas,et al. The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .
[9] K. Mclaughlin,et al. Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration , 2002, math-ph/0211022.
[10] Michael E. Fisher,et al. Toeplitz Determinants: Some Applications, Theorems, and Conjectures , 2007 .
[11] T. Ehrhardt. A Status Report on the Asymptotic Behavior of Toeplitz Determinants with Fisher-Hartwig Singularities , 2001 .
[12] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .
[13] F. Olver. Asymptotics and Special Functions , 1974 .
[14] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[15] Yang Chen,et al. Orthogonal polynomials with discontinuous weights , 2005, math-ph/0501057.
[16] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[17] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[18] P. J. Forrester,et al. Applications and generalizations of Fisher–Hartwig asymptotics , 2004 .
[19] I. V. Krasovsky. Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant , 2004 .
[20] E. Basor,et al. Perturbed Hankel determinants , 2005, math-ph/0509043.
[21] A. Kuijlaars,et al. Universality for Eigenvalue Correlations at the Origin of the Spectrum , 2003, math-ph/0305044.
[22] A.B.J. Kuijlaars,et al. Random matrices with external source and multiple orthogonal polynomials , 2003 .
[23] T. Kriecherbauer,et al. Strong asymptotics of polynomials orthogonal with respect to Freud weights , 1999 .
[24] Determinants of Hankel Matrices , 2000, math/0006070.
[25] T. Garoni. On the asymptotics of some large Hankel determinants generated by Fisher–Hartwig symbols defined on the real line , 2004, math-ph/0411019.
[26] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices , 1998 .
[27] Pavel Bleher,et al. Asymptotics of the partition function of a random matrix model , 2004 .
[28] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[29] A. Lenard. Momentum Distribution in the Ground State of the One-Dimensional System of Impenetrable Bosons , 1964 .
[30] Stephanos Venakides,et al. Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .
[31] A. Lenard. Some remarks on large Toeplitz determinants , 1972 .
[32] H. Widom. The Strong Szego Limit Theorem for Circular Arcs , 1971 .
[33] Maarten Vanlessen,et al. Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight , 2002, J. Approx. Theory.
[34] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[35] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[36] H. Widom. Toeplitz Determinants with Singular Generating Functions , 1973 .
[37] J. Baik,et al. On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.
[38] Edouard Brézin,et al. Characteristic Polynomials of Random Matrices , 2000 .
[39] Alexander Its,et al. A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .