Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis

This paper presents appropriate finite element concepts accounting for finite elastoplastic strains and isotropic stress response in arbitrary shells. Three parameterization strategies for the calculation of thin and thick smooth shells as well as shell intersections are discussed in detail. In this context the importance of the deformation gradient for an efficient implementation is especially emphasized. According to the parameterizations the computational plasticity algorithms are derived in general three-dimensional (3-D) form for thick shell structures and a restricted 2-D form satisfying the plane stress state underlying thin shells. In order to describe arbitrary shell geometries, the isoparametric concept is applied to all proposed finite element formulations. These are based on quadrilateral 4-node mixed finite shell elements. The variational approaches of the enhanced assumed strain method, the assumed natural strain concept and the reduced integration technique are accurately considered. By means of representative numerical examples the performance of the three different finite element concepts is demonstrated. Furthermore, their individual properties are addressed with respect to efficiency and numerical accuracy. Thus, crucial consequences for an optimal modelling of finite plastic strains in shells can be outlined.

[1]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[2]  Peter Wriggers,et al.  A finite element method for stability problems in finite elasticity , 1995 .

[3]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[4]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[5]  S. Reese,et al.  A comparison of three-dimensional continuum and shell elements for finite plasticity , 1996 .

[6]  E. Ramm,et al.  Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept , 1996 .

[7]  James H. Whitelaw,et al.  Foundations of continuum thermodynamics , 1974 .

[8]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[9]  Eberhard Klingbeil,et al.  Tensorrechnung für Ingenieure , 1966 .

[10]  P. Wriggers,et al.  An axisymmetrical quasi-Kirchhoff-type shell element for large plastic deformations , 1995 .

[11]  Peter Wriggers,et al.  On enhanced strain methods for small and finite deformations of solids , 1996 .

[12]  J. Chróścielewski,et al.  Genuinely resultant shell finite elements accounting for geometric and material non-linearity , 1992 .

[13]  Carlo Sansour,et al.  A theory and finite element formulation of shells at finite deformations involving thickness change: Circumventing the use of a rotation tensor , 1995, Archive of Applied Mechanics.

[14]  Eduardo N. Dvorkin,et al.  A formulation of the MITC4 shell element for finite strain elasto-plastic analysis , 1995 .

[15]  P. Wriggers,et al.  A fully non‐linear axisymmetrical quasi‐kirchhoff‐type shell element for rubber‐like materials , 1993 .

[16]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .

[17]  Peter Wriggers,et al.  A FORMULATION OF THE QS6 ELEMENT FOR LARGE ELASTIC DEFORMATIONS , 1996 .

[18]  E. Ramm,et al.  Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .

[19]  Francisco Armero,et al.  On the formulation of enhanced strain finite elements in finite deformations , 1997 .

[20]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[21]  Peter Wriggers,et al.  Thin shells with finite rotations formulated in biot stresses : theory and finite element formulation , 1993 .

[22]  Wilfried B. Krätzig,et al.  An efficient formulation of integration algorithms for elastoplastic shell analysis based on layered finite element approach , 1997 .

[23]  Edward L. Wilson,et al.  Incompatible Displacement Models , 1973 .

[24]  L. Anand,et al.  Finite deformation constitutive equations and a time integrated procedure for isotropic hyperelastic—viscoplastic solids , 1990 .

[25]  Ekkehard Ramm,et al.  Displacement dependent pressure loads in nonlinear finite element analyses , 1984 .

[26]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[27]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[28]  J. Rice,et al.  Constitutive analysis of elastic-plastic crystals at arbitrary strain , 1972 .

[29]  J. Argyris An excursion into large rotations , 1982 .

[30]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[31]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[32]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity: formulation and integration algorithms , 1992 .

[33]  Janusz Badur,et al.  Finite rotations in the description of continuum deformation , 1983 .

[34]  H. Parisch,et al.  An investigation of a finite rotation four node assumed strain shell element , 1991 .

[35]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part VII: Shell intersections with -DOF finite element formulations , 1993 .

[36]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[37]  Robert L. Taylor,et al.  A Quadrilateral Mixed Finite Element with Two Enhanced Strain Modes , 1995 .

[38]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[39]  J. Mandel Thermodynamics and Plasticity , 1973 .

[40]  M. De Handbuch der Physik , 1957 .

[41]  A. Kühhorn,et al.  A nonlinear theory for sandwich shells including the wrinkling phenomenon , 1992 .

[42]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[43]  M. J. Sewell On configuration-dependent loading , 1967 .

[44]  Peter Wriggers,et al.  A note on enhanced strain methods for large deformations , 1996 .

[45]  E. H. Lee,et al.  Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis , 1967 .

[46]  Michael Ortiz,et al.  A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations , 1985 .

[47]  Reint Boer,et al.  Vektor- und Tensorrechnung für Ingenieure , 1982 .

[48]  K. N. Morman The Generalized Strain Measure With Application to Nonhomogeneous Deformations in Rubber-Like Solids , 1986 .

[49]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[50]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[51]  Werner Wagner,et al.  A simple finite rotation formulation for composite shell elements , 1994 .

[52]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[53]  Wilfried B. Krätzig,et al.  ‘Best’ transverse shearing and stretching shell theory for nonlinear finite element simulations , 1993 .

[54]  Peter Wriggers,et al.  Consistent gradient formulation for a stable enhanced strain method for large deformations , 1996 .

[55]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[56]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[57]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[58]  Yavuz Başar,et al.  Finite-rotation elements for the non-linear analysis of thin shell structures , 1990 .

[59]  Adnan Ibrahimbegovic,et al.  Finite elastoplastic deformations of space-curved membranes , 1994 .

[60]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[61]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[62]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[63]  M. Ortiz,et al.  A material‐independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics , 1992 .

[64]  H. Bufler,et al.  Pressure Loaded Structures under Large Deformations , 1984 .

[65]  Sven Klinkel,et al.  A geometrical non‐linear brick element based on the EAS‐method , 1997 .

[66]  J. Z. Zhu,et al.  The finite element method , 1977 .

[67]  A. Ibrahimbegovic,et al.  Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II. Computational aspects , 1994 .

[68]  H. Parisch A continuum‐based shell theory for non‐linear applications , 1995 .

[69]  Robert Eberlein Finite-Elemente-Konzepte für Schalen mit großen elastischen und plastischen Verzerrungen , 1997 .