Classifying French Verbs Using French and English Lexical Resources

We present a novel approach to the automatic acquisition of a Verbnet like classification of French verbs which involves the use (i) of a neural clustering method which associates clusters with features, (ii) of several supervised and unsupervised evaluation metrics and (iii) of various existing syntactic and semantic lexical resources. We evaluate our approach on an established test set and show that it outperforms previous related work with an F-measure of 0.70.

[1]  Chris Brew,et al.  Spectral Clustering for German Verbs , 2002, EMNLP.

[2]  Martha Palmer,et al.  Investigations into the role of lexical semantics in word sense disambiguation , 2004 .

[3]  Ingrid Falk,et al.  Combining formal concept analysis and translation to assign frames and semantic role sets to French verbs , 2013, Annals of Mathematics and Artificial Intelligence.

[4]  Anne Abeillé,et al.  Growing TreeLex , 2008, CICLing.

[5]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[6]  Cédric Messiant,et al.  A Subcategorization Acquisition System for French Verbs , 2008, ACL.

[7]  Jean-Charles Lamirel,et al.  Variations to incremental growing neural gas algorithm based on label maximization , 2011, The 2011 International Joint Conference on Neural Networks.

[8]  Thierry Poibeau,et al.  Investigating the cross-linguistic potential of VerbNet-style classification , 2010, COLING.

[9]  Beth Levin,et al.  English Verb Classes and Alternations: A Preliminary Investigation , 1993 .

[10]  Alain Lelu,et al.  Mesures de qualité de clustering de documents : Prise en compte de la distribution des mots clés , 2010 .

[11]  Jean-Charles Lamirel,et al.  Novel labeling strategies for hierarchical representation of multidimensional data analysis results , 2008 .

[12]  Piet Mertens,et al.  La valence: l'approche pronominale et son application au lexique verbal , 2003 .

[13]  Martha Palmer,et al.  Verbnet: a broad-coverage, comprehensive verb lexicon , 2005 .

[14]  Jacques Farré,et al.  Computer Aided Correction and Extension of a Syntactic Wide-Coverage Lexicon , 2008, COLING.

[15]  Natalie A. Kuhlman,et al.  Linking , 1986, The Fairchild Books Dictionary of Fashion.

[16]  Jean-Charles Lamirel,et al.  A New Efficient and Unbiased Approach for Clustering Quality Evaluation , 2011, PAKDD Workshops.

[17]  Suzanne Stevenson,et al.  A Multilingual Paradigm for Automatic Verb Classification , 2002, ACL.

[18]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[19]  Suzanne Stevenson,et al.  Exploiting a Verb Lexicon in Automatic Semantic Role Labelling , 2005, HLT.

[20]  A. Ennaji,et al.  An incremental growing neural gas learns topologies , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[21]  Jean-Charles Lamirel,et al.  Clustering Quality Measures for Data Samples with Multiple Labels , 2006, Databases and Applications.

[22]  Bernd Fritzke,et al.  A Growing Neural Gas Network Learns Topologies , 1994, NIPS.

[23]  Claire Mouton Ressources et méthodes semi-supervisées pour l'analyse sémantique de texte en français , 2010 .

[24]  Yuji Matsumoto,et al.  Detecting the Organization of Semantic Subclasses of Japanese Verbs , 1997 .

[25]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[26]  Sabine Schulte im Walde Experiments on the Automatic Induction of German Semantic Verb Classes , 2006, CL.

[27]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..