Inverse lighting design for interior buildings integrating natural and artificial sources

In this paper we propose a new method for solving inverse lighting design problems that can include diverse sources such as diffuse roof skylights or artificial light sources. Given a user specification of illumination requirements, our approach provides optimal light source positions as well as optimal shapes for skylight installations in interior architectural models. The well known huge computational effort that involves searching for an optimal solution is tackled by combining two concepts: exploiting the scene coherence to compute global illumination and using a metaheuristic technique for optimization. Results and analysis show that our method provides both fast and accurate results, making it suitable for lighting design in indoor environments while supporting interactive visualization of global illumination.

[1]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[2]  Pierre Hansen,et al.  Variable neighborhood search , 1997, Eur. J. Oper. Res..

[3]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[4]  Jaakko Lehtinen,et al.  A meshless hierarchical representation for light transport , 2008, ACM Trans. Graph..

[5]  Karol Myszkowski Proceedings of the 24th Spring Conference on Computer Graphics (SCCG '08) , 2008 .

[6]  António Augusto de Sousa,et al.  Lighting Design: A Goal Based Approach using Optimisation , 1999, Rendering Techniques.

[7]  Robert J. Owens ACM SIGGRAPH 95 , 1996 .

[8]  Michael F. Cohen,et al.  Radioptimization: goal based rendering , 1993, SIGGRAPH.

[9]  Mateu Sbert,et al.  Energy-saving light positioning using heuristic search , 2012, Eng. Appl. Artif. Intell..

[10]  E. Tena An interactive system for solving inverse illumination problems using genetic algorithms , 1997 .

[11]  Janne Kontkanen,et al.  Wavelet radiance transport for interactive indirect lighting , 2006, EGSR '06.

[12]  Ulrik Brandi,et al.  Lighting Design , 2006 .

[13]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[14]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[15]  Antônio José da Silva Neto,et al.  Multi-objective optimization as a new approach to illumination design of interior spaces , 2011 .

[16]  Vincent Tourre,et al.  An inverse daylighting model for CAAD , 2008, SCCG.

[17]  Gustavo Patow,et al.  A Survey of Inverse Rendering Problems , 2003, Comput. Graph. Forum.

[18]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[19]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[20]  S. Goldfeld,et al.  Maximization by Quadratic Hill-Climbing , 1966 .

[21]  Marco Jordi,et al.  Proceedings of the IV Iberoamerican Symposium in Computer Graphics , 2011 .

[22]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[23]  Paulo Smith Schneider,et al.  Application of inverse analysis to illumination design , 2009 .

[24]  Eduardo Fernández,et al.  Low-rank Radiosity using Sparse Matrices , 2016, GRAPP/IVAPP.

[25]  H. Tal-Ezer,et al.  Parameterization-free projection for geometry reconstruction , 2007, SIGGRAPH 2007.

[26]  Gary B. Lamont,et al.  Evolutionary algorithms for solving multi-objective problems, Second Edition , 2007, Genetic and evolutionary computation series.

[27]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[28]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[29]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[30]  James Arvo,et al.  Painting with light , 1993, SIGGRAPH.

[31]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[32]  Adam Finkelstein,et al.  Lighting with paint , 2007, TOGS.

[33]  Magali Contensin,et al.  Inverse Lighting Problem in Radiosity , 2002 .

[34]  Gene H. Golub,et al.  Matrix computations , 1983 .

[35]  Toby Howard,et al.  Flexible Image‐Based Photometric Reconstruction using Virtual Light Sources , 2001, Comput. Graph. Forum.

[36]  Adam Arbree,et al.  Optimizing realistic rendering with many-light methods , 2012, SIGGRAPH '12.