A quantum walk-assisted approximate algorithm for bounded NP optimisation problems

This paper describes an application of the quantum approximate optimisation algorithm (QAOA) to efficiently find approximate solutions for computational problems contained in the polynomially bounded NP optimisation complexity class (NPO PB). We consider a generalisation of the QAOA state evolution to alternating quantum walks and solution-quality-dependent phase shifts and use the quantum walks to integrate the problem constraints of NPO problems. We apply the concept of a hybrid quantum-classical variational scheme to attempt finding the highest expectation value, which contains a high-quality solution. We synthesise an efficient quantum circuit for the constrained optimisation algorithm, and we numerically demonstrate the behaviour of the circuit with respect to an illustrative NP optimisation problem with constraints, minimum vertex cover. With examples, this paper demonstrates that the degree of accuracy to which the quantum walks are simulated can be treated as an additional optimisation parameter, leading to improved results.

[1]  Barry C. Sanders,et al.  Quantum walk on a chimera graph , 2017, 1705.11036.

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[4]  R. Sharma,et al.  SOME BETTER BOUNDS ON THE VARIANCE WITH APPLICATIONS , 2010 .

[5]  Huaiyu Mi,et al.  Ontologies and Standards in Bioscience Research: For Machine or for Human , 2010, Front. Physio..

[6]  Dong Zhou,et al.  Two-particle quantum walks applied to the graph isomorphism problem , 2010, 1002.3003.

[7]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[8]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[9]  Klaus Sutner,et al.  On σ-Automata , 1988, Complex Syst..

[10]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[11]  Leonard Pitt,et al.  Efficient Read-Restricted Monotone CNF/DNF Dualization by Learning with Membership Queries , 1999, Machine Learning.

[12]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[13]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[14]  Chris D. Godsil,et al.  State transfer on graphs , 2011, Discret. Math..

[15]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[16]  C. Weedbrook,et al.  Quantum Machine Learning over Infinite Dimensions. , 2016, Physical review letters.

[17]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[18]  Michael Small,et al.  Comparing classical and quantum PageRanks , 2015, Quantum Inf. Process..

[19]  Ashley Montanaro,et al.  Efficient quantum walk on a quantum processor , 2015, Nature Communications.

[20]  Jong-Deok Choi,et al.  Hybrid dynamic data race detection , 2003, PPoPP '03.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Viggo Kann,et al.  Polynomially Bounded Minimization Problems That Are Hard to Approximate , 1993, Nord. J. Comput..

[23]  Kunkun Wang,et al.  Centrality measure based on continuous-time quantum walks and experimental realization , 2017, 1702.03493.

[24]  Aimin Hou,et al.  A Theory of Measurement in Diagnosis from First Principles , 1994, Artif. Intell..

[25]  Eric Filiol,et al.  Combinatorial Optimisation of Worm Propagation on an Unknown Network , 2007 .

[26]  ChoiJong-Deok,et al.  Hybrid dynamic data race detection , 2003 .

[27]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[28]  Zhi-Jian Li,et al.  An analytical study of quantum walk through glued-tree graphs , 2015 .

[29]  William Feller,et al.  The fundamental limit theorems in probability , 1945 .

[30]  Alán Aspuru-Guzik,et al.  Efficient quantum circuits for diagonal unitaries without ancillas , 2013, 1306.3991.

[31]  W. Marsden I and J , 2012 .

[32]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[33]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[34]  Russell Schwartz,et al.  SNPs Problems, Complexity, and Algorithms , 2001, ESA.

[35]  C. Musvoto,et al.  World Academy of Science, Engineering and Technology 28 2007 Reality and Preferences in Community Mopane , 2022 .

[36]  Viggo Kann,et al.  Strong Lower Bounds on the Approximability of some NPO PB-Complete Maximization Problems , 1995, MFCS.

[37]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[38]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[39]  Marcin Wiesniak,et al.  Highly noise resistant multipartite quantum correlations , 2014 .

[40]  C. Q. Lee,et al.  The Computer Journal , 1958, Nature.

[41]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[42]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.