A white dwarf catalogue from Gaia-DR2 and the Virtual Observatory

We present a catalogue of 73,221 white dwarf candidates extracted from the astrometric and photometric data of the recently published Gaia DR2 catalogue. White dwarfs were selected from the Gaia Hertzsprung-Russell diagram with the aid of the most updated population synthesis simulator. Our analysis shows that Gaia has virtually identified all white dwarfs within 100 pc from the Sun. Hence, our sub-population of 8,555 white dwarfs within this distance limit and the colour range considered, $-\,0.52<(G_{\rm BP}-G_{\rm RP})<0.80$, is the largest and most complete volume-limited sample of such objects to date. From this sub-sample we identified 8,343 CO-core and 212 ONe-core white dwarf candidates and derived a white dwarf space density of $4.9\pm0.4\times10^{-3}\,{\rm pc^{-3}}$. A bifurcation in the Hertzsprung-Russell diagram for these sources, which our models do not predict, is clearly visible. We used the Virtual Observatory tool VOSA to derive effective temperatures and luminosities for our sources by fitting their spectral energy distributions, that we built from the UV to the NIR using publicly available photometry through the Virtual Observatory. From these parameters, we derived the white dwarf radii. Interpolating the radii and effective temperatures in hydrogen-rich white dwarf cooling sequences, we derived the surface gravities and masses. The Gaia 100 pc white dwarf population is clearly dominated by cool ($\sim$ 8,000 K) objects and reveals a significant population of massive ($M \sim 0.8 M_{\odot}$) white dwarfs, of which no more than $\sim$ $30-40 \%$ can be attributed to hydrogen-deficient atmospheres, and whose origin remains uncertain.

[1]  L. Helmer,et al.  The Carlsberg Meridian Telescope CCD drift scan survey , 2002, astro-ph/0209184.

[2]  P. Bradley,et al.  Asteroseismological Constraints on the Structure of the ZZ Ceti Stars G117-B15A and R548 , 1998 .

[3]  C. Copperwheat,et al.  White paper: Gaia and the end states of stellar evolution , 2014, 1407.6163.

[4]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[5]  Paolo Giommi,et al.  New white dwarf stars in the Sloan Digital Sky Survey Data Release 10 , 2014, 1411.4149.

[6]  Z. Han,et al.  The mass function of hydrogen-rich white dwarfs: robust observational evidence for a distinctive high-mass excess near 1 M⊙ , 2015, 1506.06802.

[7]  J. Liebert,et al.  A COMPREHENSIVE SPECTROSCOPIC ANALYSIS OF DB WHITE DWARFS , 2011, 1105.5433.

[8]  Kurtis A. Williams,et al.  An Empirical Initial-Final Mass Relation from Hot, Massive White Dwarfs in NGC 2168 (M35) , 2004, astro-ph/0409447.

[9]  Thomas E. Lutz,et al.  ON THE USE OF TRIGONOMETRIC PARALLAXES FOR THE CALIBRATION OF LUMINOSITY SYSTEMS: THEORY , 1973 .

[10]  The Halo White Dwarf Population , 1998, astro-ph/9802278.

[11]  J. Isern,et al.  The white dwarf luminosity function – II. The effect of the measurement errors and other biases , 2007, 0704.2719.

[12]  Simulating Gaia performances on white dwarfs , 2005, astro-ph/0504409.

[13]  L. Althaus,et al.  An upper limit to the secular variation of the gravitational constant from white dwarf stars , 2011, 1105.1992.

[14]  F. Allard,et al.  VOSA: Virtual Observatory SED Analyzer. An application to the Collinder 69 open cluster , 2008, 0808.0270.

[15]  M. Hernanz,et al.  The rate of change of the gravitational constant and the cooling of white dwarfs , 1995 .

[16]  I. Iben,et al.  On the formation and evolution of super-asymptotic giant branch stars with cores processed by carbon burning. 1: SPICA to Antares , 1994 .

[17]  Cambridge,et al.  The UKIRT Infrared Deep Sky Survey ZY JHK photometric system: passbands and synthetic colours , 2006, astro-ph/0601592.

[18]  S. L'epine,et al.  PHYSICAL PROPERTIES OF THE CURRENT CENSUS OF NORTHERN WHITE DWARFS WITHIN 40 pc OF THE SUN , 2015, 1505.02297.

[19]  J. Isern,et al.  Axions and the Cooling of White Dwarf Stars , 2008, 0806.2807.

[20]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[21]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[22]  H. Rix,et al.  An Empirical Measurement of the Initial–Final Mass Relation with Gaia White Dwarfs , 2018, The Astrophysical Journal.

[23]  Warren R. Brown,et al.  THE ELM SURVEY. IV. 24 WHITE DWARF MERGER SYSTEMS , 2012, 1204.0028.

[24]  E. Sion,et al.  The 25 Parsec Local White Dwarf Population , 2016, 1606.01236.

[25]  J. T. Herd,et al.  Precision astrometry with SuperCOSMOS , 1998 .

[26]  L. Althaus,et al.  The white dwarf population of NGC 6397 , 2015, 1507.08806.

[27]  J. Isern,et al.  The impact of a merger episode in the galactic disc white dwarf population , 2001 .

[28]  Y. Huang,et al.  DA white dwarfs from the LSS-GAC survey DR1: the preliminary luminosity and mass functions and formation rate , 2015, 1503.05618.

[29]  H. Dreiner,et al.  White Dwarfs constrain Dark Forces , 2013, 1303.7232.

[30]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[31]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[32]  Xuefei Chen,et al.  Initial-final mass relationship for stars of different metallicities , 2007, 0710.2397.

[33]  Keith T. Noddle,et al.  The VISTA Science Archive , 2012, 1210.2980.

[34]  L. Althaus,et al.  SDSS DR7 WHITE DWARF CATALOG , 2012 .

[35]  S. O. Kepler,et al.  New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12 , 2015, 1510.08409.

[36]  S. DeGennaro,et al.  THE WHITE DWARF AGE OF NGC 2477 , 2010, 1102.3459.

[37]  Terry D. Oswalt,et al.  A NEW LOOK AT THE LOCAL WHITE DWARF POPULATION , 2008 .

[38]  C. Fabricius,et al.  Gaia broad band photometry , 2010, 1008.0815.

[39]  High‐proper‐motion white dwarfs and halo dark matter , 2002, astro-ph/0207113.

[40]  James Liebert,et al.  A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4 , 2006, astro-ph/0606700.

[41]  S. O. Kepler,et al.  Seismological studies of ZZ Ceti stars -I. The model grid and the application to individual stars , 2007, 0712.1981.

[42]  L. Althaus,et al.  Revisiting the luminosity function of single halo white dwarfs , 2015, 1507.06208.

[43]  Anthony G. A. Brown,et al.  Binary white dwarfs in the halo of the Milky Way , 2014, 1407.2405.

[44]  A. Rebassa-Mansergas,et al.  Post-common envelope binaries from SDSS-X: The origin of low-mass white dwarfs , 2010, 1012.3089.

[45]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[46]  A. Córsico,et al.  Evolutionary and pulsational properties of white dwarf stars , 2010, 1007.2659.

[47]  A. Córsico,et al.  A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes , 2010, Nature.

[48]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[49]  E. Marchetti,et al.  On the White Dwarf Cooling Sequence of the Globular Cluster ω Centauri , 2007, 0712.0603.

[50]  S. O. Kepler,et al.  DB white dwarfs in the Sloan Digital Sky Survey Data Release 10 and 12 , 2015, 1509.08244.

[51]  M. Hernanz,et al.  Properties of high-density binary mixtures and the age of the Universe from white dwarf stars , 1988, Nature.

[52]  Noemi Giammichele,et al.  KNOW YOUR NEIGHBORHOOD: A DETAILED MODEL ATMOSPHERE ANALYSIS OF NEARBY WHITE DWARFS , 2012, 1202.5581.

[53]  Monte Carlo simulations of the disk white dwarf population , 1998, astro-ph/9809194.

[54]  L. G. Althaus,et al.  The age and colors of massive white dwarf stars , 2007 .

[55]  Joss Bland-Hawthorn,et al.  The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.

[56]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[57]  I. Ribas,et al.  The initial–final mass relationship of white dwarfs revisited: effect on the luminosity function and mass distribution , 2008, 0804.3034.

[58]  J. Anderson,et al.  An age difference of two billion years between a metal-rich and a metal-poor globular cluster , 2013, Nature.

[59]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[60]  N. Rowell The star formation history of the solar neighbourhood from the white dwarf luminosity function , 2013, 1306.4195.

[61]  Harry L. Shipman,et al.  Testing the White Dwarf Mass-Radius Relation with Hipparcos , 1997 .

[62]  P. Bergeron,et al.  The Ratio of Helium- to Hydrogen-Atmosphere White Dwarfs: Direct Evidence for Convective Mixing , 2007, 0710.1073.

[63]  R. Michael Rich,et al.  The Initial-Final Mass Relation: Direct Constraints at the Low-Mass End , 2007, 0706.3894.

[64]  S. O. Kepler,et al.  An independent method for determining the age of the universe , 1987 .

[65]  F. C. Wachlin,et al.  Updated Evolutionary Sequences for Hydrogen-deficient White Dwarfs , 2017, 1703.05340.

[66]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[67]  A. Córsico,et al.  DOUBLE DEGENERATE MERGERS AS PROGENITORS OF HIGH-FIELD MAGNETIC WHITE DWARFS , 2012, 1202.0461.

[68]  J. J. González-Vidal,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[69]  S. Anderson,et al.  CONSTRAINTS ON THE INITIAL-FINAL MASS RELATION FROM WIDE DOUBLE WHITE DWARFS , 2015, 1510.06107.

[70]  J. Anderson,et al.  FIRST DETECTION OF THE WHITE DWARF COOLING SEQUENCE OF THE GALACTIC BULGE , 2013, 1308.1936.

[71]  J. Isern,et al.  Axion cooling of white dwarfs , 1992, 1304.7652.

[72]  S. Torres,et al.  The white dwarf population within 40 pc of the Sun , 2016, 1602.02533.

[74]  A. Serenelli,et al.  The formation and evolution of hydrogen-deficient post-AGB white dwarfs: The emerging chemical profile and the expectations for the PG 1159-DB-DQ evolutionary connection , 2005, astro-ph/0502005.

[75]  P. Bergeron,et al.  The Formation Rate and Mass and Luminosity Functions of DA White Dwarfs from the Palomar Green Survey , 2004, astro-ph/0406657.

[76]  N. Hambly,et al.  White dwarfs in the SuperCOSMOS Sky Survey , 2011 .

[77]  L. Althaus,et al.  White dwarf evolutionary sequences for low-metallicity progenitors: The impact of third dredge-up , 2015, 1502.03882.

[78]  F. James A Review of Pseudorandom Number Generators , 1990 .

[79]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[80]  T. Oswalt,et al.  The white dwarf luminosity function , 2016, 1608.02631.

[81]  A. Córsico,et al.  NEW COOLING SEQUENCES FOR OLD WHITE DWARFS , 2010, 1005.2170.

[82]  Boris T. Gänsicke,et al.  DA white dwarfs in Sloan Digital Sky Survey Data Release 7 and a search for infrared excess emission , 2011 .

[83]  F. Castander,et al.  The ALHAMBRA Project: A large area multi medium-band optical and NIR photometric survey , 2008, 0806.3021.

[84]  M. R. Schreiber,et al.  Post-common-envelope binaries from SDSS – I. 101 white dwarf main-sequence binaries with multiple Sloan Digital Sky Survey spectroscopy , 2007, 0707.4107.

[85]  S. Cassisi,et al.  On the white dwarf distances to galactic globular clusters , 2001, astro-ph/0103315.

[86]  D. Maoz,et al.  The separation distribution and merger rate of double white dwarfs: improved constraints , 2018, 1801.04275.

[87]  R. Rohrmann Hydrogen model atmospheres for white dwarf stars , 2001, astro-ph/0102182.

[88]  The kinematics of the white dwarf population from the SDSS DR12 , 2017, 1703.09152.

[89]  C. Copperwheat,et al.  Testing the white dwarf mass-radius relationship with eclipsing binaries , 2017, 1706.05016.