A Subexponential Parameterized Algorithm for Proper Interval Completion

In the Proper Interval Completion problem we are given a graph G and an integer k, and the task is to turn G using at most k edge additions into a proper interval graph, i.e., a graph admitting an intersection model of equal-length intervals on a line. The study of Proper Interval Completion from the viewpoint of parameterized complexity has been initiated by Kaplan, Shamir and Tarjan [FOCS 1994; SIAM J. Comput. 1999], who showed an algorithm for the problem working in \(\mathcal{O}(16^k\cdot (n+m))\) time. In this paper we present an algorithm with running time \(k^{\mathcal{O}(k^{2/3})} + \mathcal{O}(nm(kn+m))\), which is the first subexponential parameterized algorithm for Proper Interval Completion.

[1]  Pinar Heggernes,et al.  Interval Completion Is Fixed Parameter Tractable , 2008, SIAM J. Comput..

[2]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[3]  Yunlong Liu,et al.  An effective branching strategy based on structural relationship among multiple forbidden induced subgraphs , 2015, J. Comb. Optim..

[4]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for interval completion , 2016, SODA 2016.

[5]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[6]  Michal Pilipczuk,et al.  Subexponential Parameterized Algorithm for Interval Completion , 2016, SODA.

[7]  Noga Alon,et al.  Fast Fast , 2009, ICALP.

[8]  Anthony Perez,et al.  Polynomial kernels for Proper Interval Completion and related problems , 2011, FCT.

[9]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[10]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[11]  Michal Pilipczuk,et al.  Exploring Subexponential Parameterized Complexity of Completion Problems , 2013, STACS.

[12]  Stefan Kratsch,et al.  Two edge modification problems without polynomial kernels , 2009, Discret. Optim..

[13]  Stefan Kratsch,et al.  Two edge modification problems without polynomial kernels , 2013, Discret. Optim..

[14]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[15]  Michal Pilipczuk,et al.  A Subexponential Parameterized Algorithm for Proper Interval Completion , 2015, SIAM J. Discret. Math..

[16]  Uriel Feige,et al.  Coping with the NP-Hardness of the Graph Bandwidth Problem , 2000, SWAT.

[17]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[18]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.

[19]  Yunlong Liu,et al.  An Effective Branching Strategy for Some Parameterized Edge Modification Problems with Multiple Forbidden Induced Subgraphs , 2013, COCOON.

[20]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for minimum fill-in , 2011, SODA.

[21]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[22]  Fahad Panolan,et al.  Faster Parameterized Algorithms for Deletion to Split Graphs , 2012, Algorithmica.

[23]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..