A carbon nanotube implementation of temporal and spatial dendritic computations

A neural dendritic computational circuit design is presented here. The circuit models the result of action potentials applied to biological synapses on a portion of a dendritic tree. The resultant excitatory post synaptic potentials (EPSPs) are combined in a dendritic tree that demonstrates linear, superlinear and sublinear summation of both spatially and temporally separated EPSPs. The synapse circuit models include neurotransmitter action, reuptake and membrane potentials. The output of the circuit is a combined Excitatory Post Synaptic Potential (EPSP). The circuit is simulated using carbon nanotube SPICE models. Variations of this design can be implemented to create a variety of dendritic computational subunits.

[1]  Aaron K. Friesz,et al.  Biomimetic Cortical Nanocircuits , 2009 .

[2]  H. Wong,et al.  A Circuit-Compatible SPICE model for Enhancement Mode Carbon Nanotube Field Effect Transistors , 2006, 2006 International Conference on Simulation of Semiconductor Processes and Devices.

[3]  Kwabena Boahen,et al.  Neuronal ion-channel dynamics in silicon , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[4]  Chongwu Zhou,et al.  Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. , 2006, Nano letters.

[5]  Chongwu Zhou,et al.  A Novel Nanotube-on-Insulator (NOI) Approach toward Single-Walled Carbon Nanotube Devices , 2006 .

[6]  Aaron K. Friesz,et al.  A Biomimetic Carbon Nanotube Synapse Circuit , 2006 .

[7]  Paul Hasler,et al.  Building large networks of biological neurons , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[8]  Alice C. Parker,et al.  Towards a Nanoscale Artificial Cortex , 2006, CDES.

[9]  Yu-Ming Chang,et al.  Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. , 2005, Cerebral cortex.

[10]  M. Prato,et al.  Biomedical applications of functionalised carbon nanotubes. , 2005, Chemical communications.

[11]  J. Meindl,et al.  Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) , 2005, IEEE Electron Device Letters.

[12]  K. Natori,et al.  Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor , 2005 .

[13]  K. Boahen Neuromorphic Microchips. (Cover story) , 2005 .

[14]  K. Boahen Neuromorphic Microchips. , 2005, Scientific American.

[15]  Yong-Bin Kim,et al.  Low power CMOS adaptive electronic central pattern generator design , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[16]  A. Selverston,et al.  Analog electronic model of the lobster pyloric central pattern generator , 2005 .

[17]  Paul E. Hasler,et al.  A bio-physically inspired silicon neuron , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Kaushik Roy,et al.  A circuit-compatible model of ballistic carbon nanotube field-effect transistors , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  Bartlett W. Mel,et al.  On the Fight Between Excitation and Inhibition: Location Is Everything , 2004, Science's STKE.

[20]  Daniel J. Sorin,et al.  Semi-empirical SPICE models for carbon nanotube FET logic , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[21]  J.V. Arthur,et al.  Recurrently connected silicon neurons with active dendrites for one-shot learning , 2004 .

[22]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[23]  Kwabena Boahen,et al.  Optic nerve signals in a neuromorphic chip II: testing and results , 2004, IEEE Transactions on Biomedical Engineering.

[24]  Gordon M. Shepherd,et al.  Introduction to Synaptic Circuits , 2004 .

[25]  S. Mukhopadhyay,et al.  A Circuit-Compatible Model of Ballistic Carbon , 2004 .

[26]  P. Burke,et al.  Carbon nanotube devices for GHz to THz applications , 2003, International Semiconductor Device Research Symposium, 2003.

[27]  Timothy K. Horiuchi,et al.  A Summating, Exponentially-Decaying CMOS Synapse for Spiking Neural Systems , 2003, NIPS.

[28]  Bogdan M. Wilamowski,et al.  A VLSI implementation of mixed-signal mode bipolar neuron circuitry , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[29]  Bo Liu,et al.  A CMOS neuron for VLSI circuit implementation of pulsed neural networks , 2002, IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02.

[30]  S. Datta,et al.  Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .

[31]  Ji Liang,et al.  Carbon nanotube dendrites: availability and their growth model , 2001 .

[32]  Rodney J. Douglas,et al.  Forward- and backpropagation in a silicon dendrite , 2001, IEEE Trans. Neural Networks.

[33]  Christof Koch,et al.  The role of single neurons in information processing , 2000, Nature Neuroscience.

[34]  P Varona,et al.  Synchronous behavior of two coupled electronic neurons. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Hicham Chaoui CMOS analogue adder , 1995 .

[36]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[37]  J. G. Elias,et al.  Silicon implementation of an artificial dendritic tree , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[38]  Misha Anne Mahowald,et al.  VLSI analogs of neuronal visual processing: a synthesis of form and function , 1992 .

[39]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[40]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.