Global optimality principles for polynomial optimization over box or bivalent constraints by separable polynomial approximations
暂无分享,去创建一个
[1] J. Ben Rosen,et al. A quadratic assignment formulation of the molecular conformation problem , 1994, J. Glob. Optim..
[2] J. William Helton,et al. Semidefinite representation of convex sets , 2007, Math. Program..
[3] Amir Ali Ahmadi,et al. A convex polynomial that is not sos-convex , 2009, Mathematical Programming.
[4] Jean B. Lasserre,et al. Polynomials nonnegative on a grid and discrete optimization , 2001 .
[5] P. Pardalos,et al. Handbook of global optimization , 1995 .
[6] Guoyin Li,et al. Global Quadratic Minimization over Bivalent Constraints: Necessary and Sufficient Global Optimality Condition , 2012, J. Optim. Theory Appl..
[7] Zhiyou Wu,et al. Global optimality conditions for some classes of polynomial integer programming problems , 2011 .
[8] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .
[9] Ioana Popescu,et al. Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..
[10] Rekha R. Thomas,et al. Semidefinite Optimization and Convex Algebraic Geometry , 2012 .
[11] J. Lasserre,et al. Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .
[12] Zhi-You Wu,et al. Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions , 2007, Math. Program..
[13] Marc Teboulle,et al. Global Optimality Conditions for Quadratic Optimization Problems with Binary Constraints , 2000, SIAM J. Optim..
[14] Yanjun Wang,et al. Global optimality conditions for cubic minimization problem with box or binary constraints , 2010, J. Glob. Optim..
[15] Vaithilingam Jeyakumar,et al. Alternative Theorems for Quadratic Inequality Systems and Global Quadratic Optimization , 2009, SIAM J. Optim..
[16] M. Pinar,et al. Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization , 2004 .
[17] Johan Löfberg,et al. Pre- and Post-Processing Sum-of-Squares Programs in Practice , 2009, IEEE Transactions on Automatic Control.
[18] Jean-Baptiste Hiriart-Urruty,et al. Global Optimality Conditions in Maximizing a Convex Quadratic Function under Convex Quadratic Constraints , 2001, J. Glob. Optim..
[19] Vaithilingam Jeyakumar,et al. Regularized Lagrangian duality for linearly constrained quadratic optimization and trust-region problems , 2011, J. Glob. Optim..
[20] Vaithilingam Jeyakumar,et al. Necessary global optimality conditions for nonlinear programming problems with polynomial constraints , 2011, Math. Program..
[21] N. Q. Huy,et al. Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization , 2009 .
[22] J. Lasserre. Moments, Positive Polynomials And Their Applications , 2009 .
[23] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[24] Arnold Neumaier. Second-order sufficient optimality conditions for local and global nonlinear programming , 1996, J. Glob. Optim..
[25] N. Q. Huy,et al. Kuhn-Tucker sufficiency for global minimum of multi-extremal mathematical programming problems , 2007 .
[26] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[27] O. Taussky. Sums of Squares , 1970 .