Global optimality principles for polynomial optimization over box or bivalent constraints by separable polynomial approximations

In this paper we present necessary conditions for global optimality for polynomial problems with box or bivalent constraints using separable polynomial relaxations. We achieve this by first deriving a numerically checkable characterization of global optimality for separable polynomial problems with box as well as bivalent constraints. Our necessary optimality conditions can be numerically checked by solving semi-definite programming problems. Then, by employing separable polynomial under-estimators, we establish sufficient conditions for global optimality for classes of polynomial optimization problems with box or bivalent constraints. We construct underestimators using the sum of squares convex (SOS-convex) polynomials of real algebraic geometry. An important feature of SOS-convexity that is generally not shared by the standard convexity is that whether a polynomial is SOS-convex or not can be checked by solving a semidefinite programming problem. We illustrate the versatility of our optimality conditions by simple numerical examples.

[1]  J. Ben Rosen,et al.  A quadratic assignment formulation of the molecular conformation problem , 1994, J. Glob. Optim..

[2]  J. William Helton,et al.  Semidefinite representation of convex sets , 2007, Math. Program..

[3]  Amir Ali Ahmadi,et al.  A convex polynomial that is not sos-convex , 2009, Mathematical Programming.

[4]  Jean B. Lasserre,et al.  Polynomials nonnegative on a grid and discrete optimization , 2001 .

[5]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[6]  Guoyin Li,et al.  Global Quadratic Minimization over Bivalent Constraints: Necessary and Sufficient Global Optimality Condition , 2012, J. Optim. Theory Appl..

[7]  Zhiyou Wu,et al.  Global optimality conditions for some classes of polynomial integer programming problems , 2011 .

[8]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[9]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[10]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[11]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[12]  Zhi-You Wu,et al.  Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions , 2007, Math. Program..

[13]  Marc Teboulle,et al.  Global Optimality Conditions for Quadratic Optimization Problems with Binary Constraints , 2000, SIAM J. Optim..

[14]  Yanjun Wang,et al.  Global optimality conditions for cubic minimization problem with box or binary constraints , 2010, J. Glob. Optim..

[15]  Vaithilingam Jeyakumar,et al.  Alternative Theorems for Quadratic Inequality Systems and Global Quadratic Optimization , 2009, SIAM J. Optim..

[16]  M. Pinar,et al.  Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization , 2004 .

[17]  Johan Löfberg,et al.  Pre- and Post-Processing Sum-of-Squares Programs in Practice , 2009, IEEE Transactions on Automatic Control.

[18]  Jean-Baptiste Hiriart-Urruty,et al.  Global Optimality Conditions in Maximizing a Convex Quadratic Function under Convex Quadratic Constraints , 2001, J. Glob. Optim..

[19]  Vaithilingam Jeyakumar,et al.  Regularized Lagrangian duality for linearly constrained quadratic optimization and trust-region problems , 2011, J. Glob. Optim..

[20]  Vaithilingam Jeyakumar,et al.  Necessary global optimality conditions for nonlinear programming problems with polynomial constraints , 2011, Math. Program..

[21]  N. Q. Huy,et al.  Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization , 2009 .

[22]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[23]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[24]  Arnold Neumaier Second-order sufficient optimality conditions for local and global nonlinear programming , 1996, J. Glob. Optim..

[25]  N. Q. Huy,et al.  Kuhn-Tucker sufficiency for global minimum of multi-extremal mathematical programming problems , 2007 .

[26]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[27]  O. Taussky Sums of Squares , 1970 .