Cancer cells reprogram to metastatic state through the acquisition of platelet mitochondria.

[1]  Hubing Shi,et al.  Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. , 2023, Cancer cell.

[2]  O. Shirihai,et al.  Mitochondrial signal transduction , 2022, Cell metabolism.

[3]  J. Berzofsky,et al.  Platelets control liver tumor growth through P2Y12-dependent CD40L release in NAFLD. , 2022, Cancer cell.

[4]  M. Xie,et al.  Aloe gel glucomannan induced colon cancer cell death via mitochondrial damage-driven PINK1/Parkin mitophagy pathway. , 2022, Carbohydrate polymers.

[5]  S. Dietmann,et al.  Mitochondrial RNA modifications shape metabolic plasticity in metastasis , 2022, Nature.

[6]  L. Fu,et al.  Flubendazole induces mitochondrial dysfunction and DRP1-mediated mitophagy by targeting EVA1A in breast cancer , 2022, Cell death & disease.

[7]  Joshua D. Mannheimer,et al.  Canine and murine models of osteosarcoma , 2022, Veterinary pathology.

[8]  L. Zender,et al.  Platelet PD-L1 reflects collective intratumoral PD-L1 expression and predicts immunotherapy response in non-small cell lung cancer , 2021, Nature Communications.

[9]  Cláudia Lopes,et al.  SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes , 2021, Cell reports.

[10]  P. Majumder,et al.  Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells , 2021, Nature Nanotechnology.

[11]  N. Chandel,et al.  Cancer metabolism: looking forward , 2021, Nature Reviews Cancer.

[12]  Libing Song,et al.  Epigenetic Induction of Mitochondrial Fission Is Required for Maintenance of Liver Cancer–Initiating Cells , 2021, Cancer Research.

[13]  L. Goldfinger,et al.  Platelets and extracellular vesicles and their cross-talk with cancer. , 2021, Blood.

[14]  Cynthia A. Reinhart-King,et al.  Mechanoresponsive metabolism in cancer cell migration and metastasis. , 2021, Cell metabolism.

[15]  I. Harris,et al.  Glutathione and its precursors in cancer. , 2021, Current opinion in biotechnology.

[16]  A. Thorburn,et al.  Autophagy and organelle homeostasis in cancer. , 2021, Developmental cell.

[17]  P. Sonveaux,et al.  Mitochondrial Transfer in Cancer: A Comprehensive Review , 2021, International journal of molecular sciences.

[18]  Changqing Zhang,et al.  Intercellular mitochondrial transfer as a means of tissue revitalization , 2021, Signal Transduction and Targeted Therapy.

[19]  J. Neuzil,et al.  Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. , 2020, Cell metabolism.

[20]  Xiaofei Li,et al.  Platelet supernatant with longer storage inhibits tumor cell growth. , 2020, Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis.

[21]  Hai-Meng Zhou,et al.  Paradoxical Mitophagy Regulation by PINK1 and TUFm. , 2020, Molecular cell.

[22]  Bixiang Zhang,et al.  Platelets are recruited to hepatocellular carcinoma tissues in a CX3CL1‐CX3CR1 dependent manner and induce tumour cell apoptosis , 2020, Molecular oncology.

[23]  Y. Inagaki,et al.  Metabolic reprogramming sustains cancer cell survival following extracellular matrix detachment , 2020, Redox biology.

[24]  K. Tew,et al.  Oxidative Stress in Cancer. , 2020, Cancer cell.

[25]  P. Sonveaux,et al.  Mitochondria in cancer , 2020, Cell stress.

[26]  B. Faubert,et al.  Metabolic reprogramming and cancer progression , 2020, Science.

[27]  Robin L. Jones,et al.  Effect of Doxorubicin Plus Olaratumab vs Doxorubicin Plus Placebo on Survival in Patients With Advanced Soft Tissue Sarcomas: The ANNOUNCE Randomized Clinical Trial. , 2020, JAMA.

[28]  L. Scorrano,et al.  The cell biology of mitochondrial membrane dynamics , 2020, Nature Reviews Molecular Cell Biology.

[29]  T. Dandekar,et al.  Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived Galectin-3. , 2020, Blood.

[30]  G. Xiong,et al.  Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction , 2020, Proceedings of the National Academy of Sciences.

[31]  L. Brisson,et al.  Autophagy and mitophagy in cancer metabolic remodelling. , 2020, Seminars in cell & developmental biology.

[32]  J. Xing,et al.  SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer. , 2020, Cancer letters.

[33]  L. Qin,et al.  MFN1-dependent alteration of mitochondrial dynamics drives hepatocellular carcinoma metastasis by glucose metabolic reprogramming , 2019, British Journal of Cancer.

[34]  P. Timpson,et al.  Fluids and their mechanics in tumour transit: shaping metastasis , 2019, Nature Reviews Cancer.

[35]  C. Dubois,et al.  The interaction of platelets with colorectal cancer cells inhibits tumor growth but promotes metastasis. , 2019, Cancer research.

[36]  D. Schadendorf,et al.  Metabolic heterogeneity confers differences in melanoma metastatic potential , 2019, Nature.

[37]  Changqing Zhang,et al.  Endoplasmic reticulum mediates mitochondrial transfer within the osteocyte dendritic network , 2019, Science Advances.

[38]  S. Tait,et al.  Mitochondria as multifaceted regulators of cell death , 2019, Nature Reviews Molecular Cell Biology.

[39]  Xianjun Yu,et al.  Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer , 2019, Gut.

[40]  K. Vousden,et al.  Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization , 2019, Cell metabolism.

[41]  V. Gorgoulis,et al.  Mitochondrial Homeostasis and Cellular Senescence , 2019, Cells.

[42]  John G Doench,et al.  Deubiquitinases Maintain Protein Homeostasis and Survival of Cancer Cells upon Glutathione Depletion. , 2019, Cell metabolism.

[43]  S. Morrison,et al.  Metabolic Adaptation Fuels Lymph Node Metastasis. , 2019, Cell metabolism.

[44]  Wei Li,et al.  Mitochondrial Dynamics Is Critical for the Full Pluripotency and Embryonic Developmental Potential of Pluripotent Stem Cells. , 2019, Cell metabolism.

[45]  E. Giannoni,et al.  Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer , 2019, bioRxiv.

[46]  D. Ingber,et al.  Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models , 2019, Science Translational Medicine.

[47]  J. Heemskerk,et al.  Platelet biology and functions: new concepts and clinical perspectives , 2018, Nature Reviews Cardiology.

[48]  M. Schlesinger Role of platelets and platelet receptors in cancer metastasis , 2018, Journal of Hematology & Oncology.

[49]  Christopher M. Williams,et al.  Loss of the mitochondrial kinase PINK1 does not alter platelet function , 2018, Scientific Reports.

[50]  S. Fendt,et al.  Metabolic Hallmarks of Metastasis Formation. , 2018, Trends in cell biology.

[51]  M. Vignais,et al.  The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. , 2018, The Biochemical journal.

[52]  Michael D. Brooks,et al.  Targeting Breast Cancer Stem Cell State Equilibrium through Modulation of Redox Signaling. , 2018, Cell metabolism.

[53]  T. Wurdinger,et al.  Tumor-Educated Platelets as a Noninvasive Biomarker Source for Cancer Detection and Progression Monitoring. , 2018, Cancer research.

[54]  M. Simon,et al.  Glutathione metabolism in cancer progression and treatment resistance , 2018, The Journal of cell biology.

[55]  A. Sood,et al.  The Platelet Lifeline to Cancer: Challenges and Opportunities. , 2018, Cancer cell.

[56]  G. Yousef,et al.  Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. , 2018, Blood.

[57]  M. J. Kim,et al.  Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function , 2018, Scientific Reports.

[58]  A. Roccaro,et al.  Platelets Enhance Multiple Myeloma Progression via IL-1β Upregulation , 2018, Clinical Cancer Research.

[59]  A. Xiang,et al.  Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells , 2018, Journal of Hematology & Oncology.

[60]  J. Whelan,et al.  Osteosarcoma, Chondrosarcoma, and Chordoma. , 2018, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[61]  Stephen T. C. Wong,et al.  Platelets reduce anoikis and promote metastasis by activating YAP1 signaling , 2017, Nature Communications.

[62]  M. Madesh,et al.  Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. , 2017, Blood.

[63]  Y. Li,et al.  Platelet‐Derived Mitochondria Display Embryonic Stem Cell Markers and Improve Pancreatic Islet β‐cell Function in Humans , 2017, Stem cells translational medicine.

[64]  D. Chan,et al.  Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells. , 2017, Cell metabolism.

[65]  J. Dubois-Randé,et al.  Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties , 2017, Cell Death and Differentiation.

[66]  Chia-Jung Li,et al.  Enhancement of Mitochondrial Transfer by Antioxidants in Human Mesenchymal Stem Cells , 2017, Oxidative medicine and cellular longevity.

[67]  Shang-Der Chen,et al.  Mitochondrial Transfer from Wharton's Jelly Mesenchymal Stem Cell to MERRF Cybrid Reduces Oxidative Stress and Improves Mitochondrial Bioenergetics , 2017, Oxidative medicine and cellular longevity.

[68]  É. Boilard,et al.  Microparticle and mitochondrial release during extended storage of different types of platelet concentrates , 2017, Platelets.

[69]  Faisal T Thayyullathil,et al.  Reactive oxygen species and cancer paradox: To promote or to suppress? , 2017, Free radical biology & medicine.

[70]  P. Stopka,et al.  Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells , 2017, eLife.

[71]  R. Weinberg,et al.  Emerging Biological Principles of Metastasis , 2017, Cell.

[72]  L. Quek,et al.  Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma , 2016, Cancer & Metabolism.

[73]  Christian Frezza,et al.  Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival , 2016, Nature Communications.

[74]  J. Gil,et al.  Mitochondria and senescence: new actors for an old play , 2016, The EMBO journal.

[75]  P. Gadue,et al.  Understanding platelet generation from megakaryocytes: implications for in vitro-derived platelets. , 2016, Blood.

[76]  K. Eales,et al.  Hypoxia and metabolic adaptation of cancer cells , 2016, Oncogenesis.

[77]  H. Snoeck,et al.  Mitofusin 2 maintains hematopoietic stem cells with extensive lymphoid potential , 2015, Nature.

[78]  Bjorn Baselet,et al.  Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway , 2015, Cellular and Molecular Life Sciences.

[79]  Pieter Wesseling,et al.  RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics , 2015, Cancer cell.

[80]  Simon C Watkins,et al.  Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs , 2015, Nature Communications.

[81]  R. Deberardinis,et al.  Oxidative stress inhibits distant metastasis by human melanoma cells , 2015, Nature.

[82]  P. Meltzer,et al.  Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[83]  Andrés Caicedo,et al.  MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function , 2015, Scientific Reports.

[84]  S. Inoue,et al.  Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. , 2015, Cancer cell.

[85]  David A. Eccles,et al.  Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. , 2015, Cell metabolism.

[86]  M. Gelb,et al.  Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. , 2014, Blood.

[87]  N. Hay,et al.  The pentose phosphate pathway and cancer. , 2014, Trends in biochemical sciences.

[88]  Nathan A. Bihlmeyer,et al.  Transcellular degradation of axonal mitochondria , 2014, Proceedings of the National Academy of Sciences.

[89]  Caroline Dive,et al.  Molecular analysis of circulating tumour cells—biology and biomarkers , 2014, Nature Reviews Clinical Oncology.

[90]  S. Rafii,et al.  Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance , 2013, Journal of Translational Medicine.

[91]  E. Giannoni,et al.  Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. , 2012, Cancer research.

[92]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[93]  K. Manova-Todorova,et al.  Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma , 2012, PloS one.

[94]  H. Rammensee,et al.  Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. , 2012, Cancer research.

[95]  Stephanie Alexander,et al.  Cancer Invasion and the Microenvironment: Plasticity and Reciprocity , 2011, Cell.

[96]  Xinnan Wang,et al.  PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility , 2011, Cell.

[97]  Richard O Hynes,et al.  Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. , 2011, Cancer cell.

[98]  Holger Gerhardt,et al.  Basic and Therapeutic Aspects of Angiogenesis , 2011, Cell.

[99]  R. Youle,et al.  Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. , 2011, Current opinion in cell biology.

[100]  A. Cox,et al.  RalA and RalBP1 regulate mitochondrial fission at mitosis , 2011, Nature Cell Biology.

[101]  T. Mak,et al.  Regulation of cancer cell metabolism , 2011, Nature Reviews Cancer.

[102]  C. Holmes,et al.  The platelet contribution to cancer progression , 2011, Journal of thrombosis and haemostasis : JTH.

[103]  W. Kaelin,et al.  Q&A: Cancer: Clues from cell metabolism , 2010, Nature.

[104]  M. Berridge,et al.  Effects of mitochondrial gene deletion on tumorigenicity of metastatic melanoma: reassessing the Warburg effect. , 2010, Rejuvenation research.

[105]  J. Milbrandt,et al.  Mitofusin 2 Is Necessary for Transport of Axonal Mitochondria and Interacts with the Miro/Milton Complex , 2010, The Journal of Neuroscience.

[106]  A. Whitworth,et al.  Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin , 2010, Proceedings of the National Academy of Sciences.

[107]  Hanna Y. Irie,et al.  Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment , 2009, Nature.

[108]  Badrinath Roysam,et al.  A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase , 2009, Proceedings of the National Academy of Sciences.

[109]  Z. Dong,et al.  Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. , 2009, The Journal of clinical investigation.

[110]  A. Godzik,et al.  S-Nitrosylation of Drp1 Mediates β-Amyloid-Related Mitochondrial Fission and Neuronal Injury , 2009, Science.

[111]  Yi-qiang Wang,et al.  Platelet-induced inhibition of tumor cell growth. , 2008, Thrombosis research.

[112]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.

[113]  Hansong Deng,et al.  The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[114]  Masahiko Zuka,et al.  Platelet glycoprotein Ibα supports experimental lung metastasis , 2007, Proceedings of the National Academy of Sciences.

[115]  Toshihiko Oka,et al.  Mitotic Phosphorylation of Dynamin-related GTPase Drp1 Participates in Mitochondrial Fission* , 2007, Journal of Biological Chemistry.

[116]  Darwin J. Prockop,et al.  Mitochondrial transfer between cells can rescue aerobic respiration , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[117]  P. Jurasz,et al.  Platelet–cancer interactions: mechanisms and pharmacology of tumour cell‐induced platelet aggregation , 2004, British journal of pharmacology.

[118]  Kap-Seok Yang,et al.  Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[119]  R. Gillies,et al.  Why do cancers have high aerobic glycolysis? , 2004, Nature Reviews Cancer.

[120]  R. Youle,et al.  Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis , 2004, The Journal of cell biology.

[121]  S. Manabe,et al.  A novel model of continuous depletion of glutathione in mice treated with L-buthionine (S,R)-sulfoximine. , 2003, The Journal of toxicological sciences.

[122]  S. Mousa,et al.  Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454 , 2003, Thrombosis and Haemostasis.

[123]  Michael P. Myers,et al.  Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate , 2003, Nature.

[124]  J. Tímár,et al.  Multiple Roles for Platelet GPIIb/IIIa and αvβ3 Integrins in Tumor Growth, Angiogenesis, and Metastasis , 2002 .

[125]  B. Echtenacher,et al.  Lysis of tumor cells by natural killer cells in mice is impeded by platelets. , 1999, Cancer research.

[126]  L. Baud,et al.  Protection from tumor necrosis factor-mediated cytolysis by platelets. , 1993, The American journal of pathology.

[127]  C. Fisher Metastasis , 1989, Ciba Foundation symposium.

[128]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[129]  B. Tesfamariam Involvement of platelets in tumor cell metastasis. , 2016, Pharmacology & therapeutics.

[130]  D. Zorov,et al.  Enabling Technologies for Cell-Based Clinical Translation Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons : The Role of Crosstalk Between Cells , 2015 .

[131]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[132]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[133]  J. Degen,et al.  Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. , 2005, Blood.