Study of compressibility modifications to the k- ε turbulence model

In modeling the effect of compressibility on the turbulence structure, additional physical mechanisms arise in production and dissipation of turbulent kinetic energy. Several proposed treatments dealing with the dilatation dissipation and the pressure dilatation correlation are discussed in the context of the k−e two-equation model. Modifications accounting for the turbulent mass flux, enthalpic production, and baroclinic torque are also assessed along with the nonequilibrium treatment. These compressibility models are evaluated with the aid of experimental data for supersonic flow over an axisymmetric afterbody. With the free-stream Mach number of 2.46, the compressibility and nonequilibrium modifications give marginally better results for the turbulence structure and offer added insight into the mean and fluctuating flow fields.

[1]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[2]  Wei Shyy,et al.  A numerical analysis of supersonic flow over an axisymmetric afterbody , 1993 .

[3]  D. W. Bogdanoff,et al.  Compressibility Effects in Turbulent Shear Layers , 1983 .

[4]  C. C. Horstman,et al.  On the use of wall functions as boundary conditions for two-dimensional separated compressible flows , 1985 .

[5]  Otto Zeman,et al.  Dilatation dissipation: The concept and application in modeling compressible mixing layers , 1990 .

[6]  Sutanu Sarkar,et al.  The pressure-dilatation correlation in compressible flows , 1992 .

[7]  S. Ragab,et al.  Linear instabilities in two‐dimensional compressible mixing layers , 1989 .

[8]  A. Roshko,et al.  The compressible turbulent shear layer: an experimental study , 1988, Journal of Fluid Mechanics.

[9]  C. Sun,et al.  A modified wall wake velocity profile for turbulent compressible boundary layers. , 1973 .

[10]  Sutanu Sarkar,et al.  Application of a Reynolds stress turbulence model to the compressible shear layer , 1990 .

[11]  David C. Wilcox,et al.  Dilatation-dissipation corrections for advanced turbulence models , 1992 .

[12]  J. Shuen,et al.  Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations , 1992 .

[13]  P. Bernard,et al.  Bounded Energy States in Homogeneous Turbulent Shear Flow—An Alternative View , 1992 .

[14]  Gordon Erlebacher,et al.  The analysis and modelling of dilatational terms in compressible turbulence , 1989, Journal of Fluid Mechanics.

[15]  M. Samimy,et al.  Effects of Expansions on a Supersonic Boundary Layer: Surface Pressure Measurements , 1994 .

[16]  Jubaraj Sahu,et al.  Navier-Stokes computations of projectile base flow with and without mass injection , 1983 .

[17]  J. Dussauge,et al.  Behavior of a turbulent flow, strongly out of equilibrium, at supersonic speeds , 1977 .

[18]  S. Thangam,et al.  Turbulent Flow Past a Backward-Facing Step: A Critical Evaluation of Two-Equation Models , 1992 .

[19]  Wei Shyy,et al.  Development of pressure-based composite multigrid methods for complex fluid flows , 1996 .

[20]  T. C. Vu,et al.  Draft Tube Loss Prediction by Viscous Flow Analysis - The Quest for Accuracy , 1996 .

[21]  Rhj Sellin,et al.  Engineering Turbulence - Modelling and experiments 3 , 1996 .

[22]  Sanjiva K. Lele,et al.  Compressibility Effects on Turbulence , 1994 .

[23]  Dimitri Papamoschou,et al.  STRUCTURE OF THE COMPRESSIBLE TURBULENT SHEAR LAYER , 1989 .

[24]  P. Bradshaw,et al.  Compressible turbulent channel flows: DNS results and modelling , 1995, Journal of Fluid Mechanics.

[25]  Sutanu Sarkar,et al.  The stabilizing effect of compressibility in turbulent shear flow , 1994, Journal of Fluid Mechanics.

[26]  G. Blaisdell,et al.  Numerical simulation of compressible homogeneous turbulence , 1991 .

[27]  M. W. Rubesin Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows , 1990 .

[28]  P. Bradshaw,et al.  Turbulence Models for Compressible Boundary Layers , 1994 .

[29]  Noel T. Clemens,et al.  Large-scale structure and entrainment in the supersonic mixing layer , 1995, Journal of Fluid Mechanics.

[30]  Peter Bradshaw,et al.  Compressible Turbulent Shear Layers , 1977 .

[31]  Mo Samimy,et al.  Effects of compressibility on the characteristics of free shear layers , 1990 .

[32]  A. J. Peace,et al.  Turbulent flow predictions for afterbody/nozzle geometries includingbase effects , 1989 .

[33]  Otto Zeman,et al.  A new model for super/hypersonic turbulent boundary layers , 1993 .

[34]  H. C. Yee,et al.  On symmetric and upwind TVD schemes , 1985 .

[35]  J. R. Ristorcelli,et al.  A REPRESENTATION FOR THE TURBULENT MASS FLUX CONTRIBUTION TO REYNOLDS-STRESS AND TWO-EQUATION CLOSURES FOR COMPRESSIBLE TURBULENCE , 1993 .

[36]  J. C. Dutton,et al.  Supersonic Base Flow Experiments in the Near Wake of a Cylindrical Afterbody , 1993 .

[37]  T. J. Coakley,et al.  Calculations of supersonic and hypersonic flows using compressible wall functions , 1993 .