DOMAIN DECOMPOSITION PRECONDITIONERS FOR LINEAR–QUADRATIC ELLIPTIC OPTIMAL CONTROL PROBLEMS

We develop and analyze a class of overlapping domain decomposition (DD) preconditioners for linear-quadratic elliptic optimal control problems. Our preconditioners utilize the structure of the optimal control problems. Their execution requires the parallel solution of subdomain linear-quadratic elliptic optimal control problems, which are essentially smaller subdomain copies of the original problem. This work extends to optimal control problems the application and analysis of overlapping DD preconditioners, which have been used successfully for the solution of single PDEs. We prove that for a class of problems the performance of the two-level versions of our preconditioners is independent of the mesh size and of the subdomain size.

[1]  Max Gunzburger,et al.  Finite element approximations of an optimal control problem associated with the scalar Ginzburg-Landau equation , 1991 .

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[4]  Hoang Nguyen,et al.  Neumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems , 2006, SIAM J. Sci. Comput..

[5]  Fredi Tröltzsch,et al.  Error estimates for linear-quadratic elliptic control problems , 2002, Analysis and Optimization of Differential Systems.

[6]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[7]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[8]  J. Jahn Introduction to the Theory of Nonlinear Optimization , 1994 .

[9]  T. Chan,et al.  Overlapping domain decomposition and multigrid methods for inverse problems , 1998 .

[10]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[11]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[12]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[13]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[14]  Martin Burger,et al.  Fast Optimal Design of Semiconductor Devices , 2003, SIAM J. Appl. Math..

[15]  A Thesis Submitted,et al.  Domain Decomposition Methods for Linear-Quadratic Elliptic Optimal Control Problems , 2004 .

[16]  O. Widlund,et al.  Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .

[17]  A. Bounaim,et al.  A Lagrangian Approach to a DDM for an Optimal Control Problem , 1998 .

[18]  David E. Keyes,et al.  Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..

[19]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[20]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[21]  Nicholas I. M. Gould,et al.  On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem , 1985, Math. Program..

[22]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[23]  R. Freund,et al.  A new Krylov-subspace method for symmetric indefinite linear systems , 1994 .

[24]  Matthias Heinkenschloss,et al.  Balancing Neumann-Neumann Methods for Elliptic Optimal Control Problems , 2005 .

[25]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[26]  Manuel Delgado,et al.  Study of the Optimal Harvesting Control and the Optimality System for an Elliptic Problem , 2003, SIAM J. Control. Optim..

[27]  Karl Kunisch,et al.  Nonoverlapping Domain Decomposition Methods for Inverse Problems , 1997 .

[28]  Jean-David Benamou,et al.  A Domain Decomposition Method with Coupled Transmission Conditions for the Optimal Control of Systems Governed by Elliptic Partial Differential Equations , 1996 .

[29]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[30]  William G. Litvinov,et al.  Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics , 2000 .

[31]  Xiao,et al.  MULTIPLICATIVE SCHWARZ ALGORITHMS FOR SOME NONSYMMETRIC AND INDEFINITE PROBLEMS , 1993 .

[32]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[33]  J. Lions,et al.  Sur le contrôle parallèle des systèmes distribués , 1998 .

[34]  R. Freund,et al.  Software for simplified Lanczos and QMR algorithms , 1995 .

[35]  S. Ravindran,et al.  Analysis and approximation of optimal control problems for a simplified Ginzburg-Landau model of superconductivity , 1997 .

[36]  Eugene M. Cliff,et al.  Thermal-fluid control via finite-dimensional approximation , 1996 .

[37]  O. Ghattas,et al.  Parallel Preconditioners for KKT Systems Arising in Optimal Control of Viscous Incompressible Flows , 2000 .

[38]  Gabriel Wittum,et al.  Numerical Solution of Elliptic Differential Equations by Reduction to the Interface , 2004, Lecture Notes in Computational Science and Engineering.

[39]  S. Scott Collis,et al.  Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems ∗ , 2002 .

[40]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[41]  James E. Dennis,et al.  A Comparison of Nonlinear Programming Approaches to an Elliptic Inverse Problem and a New Domain Dec , 1994 .

[42]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..

[43]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[44]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .