Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams

Coding in the projective space has received recently a lot of attention due to its application in network coding. Reduced row echelon form of the linear subspaces and Ferrers diagram can play a key role for solving coding problems in the projective space. In this paper, we propose a method to design error-correcting codes in the projective space. We use a multilevel approach to design our codes. First, we select a constant-weight code. Each codeword defines a skeleton of a basis for a subspace in reduced row echelon form. This skeleton contains a Ferrers diagram on which we design a rank-metric code. Each such rank-metric code is lifted to a constant-dimension code. The union of these codes is our final constant-dimension code. In particular, the codes constructed recently by Koetter and Kschischang are a subset of our codes. The rank-metric codes used for this construction form a new class of rank-metric codes. We present a decoding algorithm to the constructed codes in the projective space. The efficiency of the decoding depends on the efficiency of the decoding for the constant-weight codes and the rank-metric codes. Finally, we use puncturing on our final constant-dimension codes to obtain large codes in the projective space which are not constant-dimension.

[1]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[2]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[3]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[4]  N. J. A. Sloane,et al.  Lexicographic codes: Error-correcting codes from game theory , 1986, IEEE Trans. Inf. Theory.

[5]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[6]  Maximilien Gadouleau,et al.  On the Connection between Optimal Constant-Rank Codes and Optimal Constant-Dimension Codes , 2008, ArXiv.

[7]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[8]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[9]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[10]  D. Knuth Subspaces, subsets, and partitions , 1971 .

[11]  Martin Bossert,et al.  Codes for network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[12]  Ning Cai,et al.  Network Error Correction, I: Basic Concepts and Upper Bounds , 2006, Commun. Inf. Syst..

[13]  S. Finch Integer partitions , 2021 .

[14]  Stephen C. Milne Mappings of Subspaces into Subsets , 1982, J. Comb. Theory, Ser. A.

[15]  R. Yeung,et al.  NETWORK ERROR CORRECTION , PART I : BASIC CONCEPTS AND UPPER BOUNDS , 2006 .

[16]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[17]  Vitaly Skachek,et al.  Recursive Code Construction for Random Networks , 2008, IEEE Transactions on Information Theory.

[18]  R. Yeung,et al.  NETWORK ERROR CORRECTION, PART II: LOWER BOUNDS , 2006 .

[19]  R. Koetter,et al.  The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[20]  Joachim Rosenthal,et al.  Spread codes and spread decoding in network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[21]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[22]  Maximilien Gadouleau,et al.  Constant-rank codes , 2008, 2008 IEEE International Symposium on Information Theory.

[23]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[24]  Shu-Tao Xia,et al.  Johnson type bounds on constant dimension codes , 2007, Des. Codes Cryptogr..

[25]  Rudolf Ahlswede,et al.  On Perfect Codes and Related Concepts , 2001, Des. Codes Cryptogr..

[26]  Alexander Vardy,et al.  Error-correcting codes in projective space , 2008, 2008 IEEE International Symposium on Information Theory.