A tutorial on the emerging nanotechnology devices

This paper provides an overview of the research on nanometer scale electronic switching devices. Such devices are likely to be used for building ultra-density integrated electronic computers of the future. We first describe the problems faced by the downscaling of FET devices and then discuss the emerging alternatives: 1) Carbon Nanotube transistors 2) Quantum effect and single-electron devices and 3) Molecular electronic devices. We discuss the basic operating principle of each type of device. Here mathematical details have been suppressed in favor of simpler understanding. The present state of the art for each new device is given, outlining the open problems for research. Finally, a possible time-line for their large-scale implementation is given.

[1]  M. Kastner,et al.  The single-electron transistor , 1992 .

[2]  Neil Weste,et al.  Principles of CMOS VLSI Design , 1985 .

[3]  N. Seeman The use of branched DNA for nanoscale fabrication , 1991 .

[4]  S. Asai,et al.  Technology challenges for integration near and below 0.1 μm , 1997, Proc. IEEE.

[5]  T. D. Schneider,et al.  Sequence logos, machine/channel capacity, Maxwell's demon, and molecular computers: a review of the theory of molecular machines , 1994 .

[6]  David K. Ferry Quantum Mechanics : An Introduction for Device Physicists and Electrical Engineers, Second Edition , 1995 .

[7]  T. Ebbesen Carbon Nanotubes: Preparation and Properties , 1996 .

[8]  Siegfried Selberherr,et al.  A comparative study of single-electron memories , 1998 .

[9]  C. Wasshuber Computational Single-Electronics , 2001 .

[10]  James C. Ellenbogen,et al.  Overview of nanoelectronic devices , 1997, Proc. IEEE.

[11]  Christoph Wasshuber Single-electronics - how it works. How it's used. How it's simulated , 2002, Proceedings International Symposium on Quality Electronic Design.

[12]  Eric S. Snow,et al.  Nanofabrication with proximal probes , 1996 .

[13]  G. Whitesides,et al.  Formation of Monolayers by the Coadsorption of Thiols on Gold: Variation in the Length of the Alkyl Chain , 1989 .

[14]  M. Nagata,et al.  Limitations, innovations, and challenges of circuits and devices into a half micrometer and beyond , 1992 .

[15]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[16]  A. R. Brown,et al.  Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators , 1995, Science.

[17]  S. Takeda,et al.  Solid neopentane C(CH3)4 as studied by nuclear magnetic resonance A detailed examination of methyl and molecular reorientation in the low temperature phase , 1982 .

[18]  Kazuo Nakazato,et al.  Single-electron devices , 1996 .

[19]  Vwani P. Roychowdhury,et al.  Computational Paradigms in Nanoelectronics: Quantum Coupled Single Electron Logic and Neuromorphic Networks , 1996 .

[20]  Vwani P. Roychowdhury,et al.  Nanoelectronic architecture for Boolean logic , 1997, Proc. IEEE.

[21]  L. Pichon,et al.  Investigation of microwave π transitions in cesium beam clocks operated with U‐shaped H plane waveguide cavities , 1995 .

[22]  A. Barclay The Quantum Dot: A Journey into the Future of Microelectronics , 1996 .

[23]  U. Meirav,et al.  Single-electron phenomena in semiconductors , 1996 .

[24]  W. Frensley Gallium arsenide transistors , 1987 .

[25]  A. Aviram Molecules for memory, logic and amplification , 1988 .

[26]  William A. Tolles Nanoscience and nanotechnology in Europe , 1996 .

[27]  Gerd K. Binnig,et al.  The Scanning Tunneling Microscope , 1985 .

[28]  R. Bate The quantum-effect device: Tomorrow's transistors , 1988 .

[29]  Yu. G. Krieger Molecular electronics: Current state and future trends , 1993 .

[30]  Siegfried Selberherr,et al.  SIMON-A simulator for single-electron tunnel devices and circuits , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[31]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[32]  M. Ancona Design of computationally useful single-electron digital circuits , 1996 .

[33]  M. Kastner Artificial Atoms:Their Physics and Potential Application , 1996 .

[34]  Mark A. Ratner,et al.  Molecular electronics , 2005 .

[35]  J. Gimzewski,et al.  An electromechanical amplifier using a single molecule , 1997 .

[36]  Ioannis G. Karafyllidis,et al.  A simulator for single-electron tunnel devices and circuits based on simulated annealing , 1999 .

[37]  K. Mullis The unusual origin of the polymerase chain reaction. , 1990, Scientific American.

[38]  Carver A. Mead Scaling of MOS technology to submicrometer feature sizes , 1994 .

[39]  J. Gimzewski,et al.  ANALYSIS OF LOW-VOLTAGE I(V) CHARACTERISTICS OF A SINGLE C60 MOLECULE , 1995 .

[40]  A. Aviram,et al.  Evidence of switching and rectification by a single molecule effected with a scanning tunneling microscope , 1989 .

[41]  A. Epstein,et al.  Linear-chain conductors , 1979 .

[42]  J. S. Hall Nanocomputers and Reversible Logic 1.2 General Computer Principles , 1994 .

[43]  D. Harame,et al.  SILICON:GERMANIUM HETEROJUNCTION BIPOLAR TRANSISTORS: FROM EXPERIMENT TO TECHNOLOGY , 1994 .