Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440.

A major challenge in microbiology is the elucidation of the genetic and ecophysiological basis of habitat specificity of microbes. Pseudomonas putida is a paradigm of a ubiquitous metabolically versatile soil bacterium. Strain KT2440, a safety strain that has become a laboratory workhorse worldwide, has been recently sequenced and its genome annotated. By drawing on both published information and on original in silico analysis of its genome, we address here the question of what genomic features of KT2440 could explain or are consistent with its ubiquity, metabolic versatility and adaptability. The genome of KT2440 exhibits combinations of features characteristic of terrestrial, rhizosphere and aquatic bacteria, which thrive in either copiotrophic or oligotrophic habitats, and suggests that P. putida has evolved and acquired functions that equip it to thrive in diverse, often inhospitable environments, either free-living, or in close association with plants. The high diversity of protein families encoded by its genome, the large number and variety of small aralogous families, insertion elements, repetitive extragenic palindromic sequences, as well as the mosaic structure of the genome (with many regions of 'atypical' composition) and the multiplicity of mobile elements, reflect a high functional diversity in P. putida and are indicative of its evolutionary trajectory and adaptation to the diverse habitats in which it thrives. The unusual wealth of determinants for high affinity nutrient acquisition systems, mono- and di-oxygenases, oxido-reductases, ferredoxins and cytochromes, dehydrogenases, sulfur metabolism proteins, for efflux pumps and glutathione-S-transfereases, and for the extensive array of extracytoplasmatic function sigma factors, regulators, and stress response systems, constitute the genomic basis for the exceptional nutritional versatility and opportunism of P. putida , its ubiquity in diverse soil, rhizosphere and aquatic systems, and its renowned tolerance of natural and anthropogenic stresses. This metabolic diversity is also the basis of the impressive evolutionary potential of KT2440, and its utility for the experimental design of novel pathways for the catabolism of organic, particularly aromatic, pollutants, and its potential for bioremediation of soils contaminated with such compounds as well as for its application in the production of high-added value compounds.

[1]  V. Shingler,et al.  Integration of Global Regulation of Two Aromatic-Responsive σ54-Dependent Systems: a Common Phenotype by Different Mechanisms , 2002, Journal of bacteriology.

[2]  K. Timmis,et al.  Chaotropic solutes cause water stress in Pseudomonas putida. , 2003, Environmental Microbiology.

[3]  H. Shinagawa,et al.  Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: Homologies between OxyR protein and a family of bacterial activator proteins , 1989, Molecular and General Genetics MGG.

[4]  D. Jahn,et al.  Regulation of heme biosynthesis in non-phototrophic bacteria. , 2002, Journal of molecular microbiology and biotechnology.

[5]  S. Farrand,et al.  A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains , 1997, Journal of bacteriology.

[6]  J. Saunders,et al.  The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. , 2001, FEMS microbiology ecology.

[7]  J. Fyfe,et al.  Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina. , 1981, Journal of general microbiology.

[8]  J A Eisen,et al.  The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58 , 2001, Science.

[9]  The alternative sigma factor sigma(28) of the extreme thermophile Aquifex aeolicus restores motility to an Escherichia coli fliA mutant. , 2000, FEMS microbiology letters.

[10]  P. Weisbeek,et al.  Alginate regulatory and biosynthetic gene homologs in Pseudomonas putida WCS358: correlation with the siderophore regulatory gene pfrA. , 1995, Gene.

[11]  S. Resnick,et al.  Diverse reactions catalyzed by naphthalene dioxygenase fromPseudomonas sp strain NCIB 9816 , 1996, Journal of Industrial Microbiology.

[12]  J. Vanderleyden,et al.  The role of bacterial motility, chemotaxis and attachment in bacteria-plant interactions , 1995 .

[13]  K. Nelson,et al.  Global features of the Pseudomonas putida KT2440 genome sequence. , 2002, Environmental microbiology.

[14]  J. Keasling,et al.  A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion , 2003, Applied Microbiology and Biotechnology.

[15]  P. H. Clarke The metabolic versatility of pseudomonads , 1982, Antonie van Leeuwenhoek.

[16]  Eduardo Díaz,et al.  Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. , 2002, Environmental microbiology.

[17]  V. de Lorenzo,et al.  The IIANtr (PtsN) Protein of Pseudomonas putida Mediates the C Source Inhibition of the ς54-dependent Pu Promoter of the TOL Plasmid* , 1999, The Journal of Biological Chemistry.

[18]  Ian T. Paulsen,et al.  Complete genome sequence of Caulobacter crescentus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  B. Fox,et al.  Cloning and Sequence Analysis of Two PseudomonasFlavoprotein Xenobiotic Reductases , 1999, Journal of bacteriology.

[20]  C. Sasakawa,et al.  Identification and characterization of virK, a virulence‐associated large plasmid gene essential for intercellular spreading of Shigella flexneri , 1992, Molecular microbiology.

[21]  S F Altschul,et al.  Protein database searches for multiple alignments. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Naharro,et al.  Two different pathways are involved in the β‐oxidation of n‐alkanoic and n‐phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications , 2001, Molecular microbiology.

[23]  M H Saier,et al.  Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. , 1998, Journal of molecular biology.

[24]  F. O'Gara,et al.  Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. , 2001, Current opinion in biotechnology.

[25]  K. Timmis,et al.  Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. , 1987, Science.

[26]  K. Timmis,et al.  Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. , 1981, Gene.

[27]  Y. Michel-Briand,et al.  The pyocins of Pseudomonas aeruginosa. , 2002, Biochimie.

[28]  J. García,et al.  Novel Biodegradable Aromatic Plastics from a Bacterial Source , 1999, The Journal of Biological Chemistry.

[29]  E. Caputo,et al.  The Rhizobium etli trpB gene is essential for an effective symbiotic interaction with Phaseolus vulgaris. , 1999, Molecular plant-microbe interactions : MPMI.

[30]  P. Watnick,et al.  Identification and Characterization of a Vibrio cholerae Gene, mbaA , Involved in Maintenance of Biofilm Architecture , 2022 .

[31]  K. Timmis,et al.  Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. , 2003, Environmental microbiology.

[32]  E. Titarenko,et al.  Mutants of Ralstonia (Pseudomonas) solanacearum sensitive to antimicrobial peptides are altered in their lipopolysaccharide structure and are avirulent in tobacco , 1997, Journal of bacteriology.

[33]  K. Niehaus,et al.  Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core , 2001, Molecular Genetics and Genomics.

[34]  J. Ramos,et al.  Species-specific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida. , 2002, Nucleic acids research.

[35]  B. Witholt,et al.  Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. , 2001, Current opinion in biotechnology.

[36]  Michael Y. Galperin,et al.  Novel domains of the prokaryotic two-component signal transduction systems. , 2001, FEMS microbiology letters.

[37]  Víctor de Lorenzo,et al.  The sigma54 regulon (sigmulon) of Pseudomonas putida. , 2003, Environmental microbiology.

[38]  A. Steinbüchel,et al.  Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. , 2001, Biomacromolecules.

[39]  B. Galán,et al.  Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. , 2000, Environmental microbiology.

[40]  V. de Lorenzo,et al.  Expression systems and physiological control of promoter activity in bacteria. , 1998, Current opinion in microbiology.

[41]  D. Segura,et al.  Mutational Inactivation of a Gene Homologous to Escherichia coli ptsP Affects Poly-β-Hydroxybutyrate Accumulation and Nitrogen Fixation in Azotobacter vinelandii , 1998, Journal of bacteriology.

[42]  L. Rahme,et al.  Common mechanisms for pathogens of plants and animals. , 2001, Annual review of phytopathology.

[43]  B. Okeke,et al.  Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. , 1998, Microbiology.

[44]  B. Lugtenberg,et al.  Lipopolysaccharides of Pseudomonas spp. that stimulate plant growth: composition and use for strain identification , 1987, Journal of bacteriology.

[45]  K. N. Timmis,et al.  New Route to Bacterial Production of Indigo , 1986, Bio/Technology.

[46]  J. Ramos,et al.  Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds , 2000, Journal of bacteriology.

[47]  H. Tan,et al.  Bacterial catabolic transposons , 1999, Applied Microbiology and Biotechnology.

[48]  T. Nakazawa Travels of a Pseudomonas, from Japan around the world. , 2002, Environmental microbiology.

[49]  J. Michiels,et al.  The Rhizobium etli rpoN Locus: DNA Sequence Analysis and Phenotypical Characterization of rpoN,ptsN, and ptsA Mutants , 1998, Journal of bacteriology.

[50]  L. Burrows,et al.  Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. , 1999, Microbiology.

[51]  P. Phibbs,et al.  Alternative pathways of carbohydrate utilization in pseudomonads. , 1984, Annual review of microbiology.

[52]  G. Skjåk‐Braek,et al.  Monomer sequence and acetylation pattern in some bacterial alginates. , 1986, Carbohydrate research.

[53]  W. Ghiorse,et al.  Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. , 2001, Environmental microbiology.

[54]  B. Hwang,et al.  Corynebacterium glutamicum Utilizes both Transsulfuration and Direct Sulfhydrylation Pathways for Methionine Biosynthesis , 2002, Journal of bacteriology.

[55]  M. Pagni,et al.  The elusive roles of bacterial glutathione S-transferases: new lessons from genomes , 2002, Applied Microbiology and Biotechnology.

[56]  D. Ussery,et al.  Comparative Genomics of Pseudomonas aeruginosa PAO1 and Pseudomonas putida KT2440: Orthologs, Codon Usage, Repetitive Extragenic Palindromic Elements, and Oligonucleotide Motif Signatures , 2002 .

[57]  W. Reineke Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. , 1998, Annual review of microbiology.

[58]  W. Fiers,et al.  Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. , 1982, Gene.

[59]  A. Camper,et al.  Characterization of Phenotypic Changes inPseudomonas putida in Response to Surface-Associated Growth , 2001, Journal of bacteriology.

[60]  M. Saier,et al.  Novel phosphotransferase systems revealed by bacterial genome analysis: the complete repertoire of pts genes in Pseudomonas aeruginosa. , 1999, Journal of molecular microbiology and biotechnology.

[61]  K. Timmis,et al.  Designing microorganisms for the treatment of toxic wastes. , 1994, Annual review of microbiology.

[62]  A. Kiener,et al.  Industrial biocatalysis today and tomorrow , 2001, Nature.

[63]  C. H. Ward,et al.  Handbook of Bioremediation , 1993 .

[64]  M G Wubbolts,et al.  Biotransformation of substituted benzoates to the corresponding cis-diols by an engineered strain of Pseudomonas oleovorans producing the TOL plasmid-specified enzyme toluate-1,2-dioxygenase , 1990, Applied and environmental microbiology.

[65]  S. Dagley Catabolism of aromatic compounds by micro-organisms. , 1971, Advances in microbial physiology.

[66]  J. Ramos,et al.  The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH and metE gene products , 2001, Archives of Microbiology.

[67]  Caroline S. Harwood,et al.  THE β-KETOADIPATE PATHWAY AND THE BIOLOGY OF SELF-IDENTITY , 1996 .

[68]  Bernard R. Glick,et al.  Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System , 2002, Applied and Environmental Microbiology.

[69]  J. Lamerdin,et al.  Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea , 2003, Journal of bacteriology.

[70]  L. van der Fits,et al.  A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  L. Burrows,et al.  Molecular characterization of the Pseudomonas aeruginosa serotype O5 (PAO1) B‐band lipopolysaccharide gene cluster , 1996, Molecular microbiology.

[72]  J. Ramos Lessons from the Genome of a Lithoautotroph: Making Biomass from Almost Nothing , 2003, Journal of bacteriology.

[73]  K. Yoshida,et al.  Sequence characterization of the vir region of a nopaline type Ti plasmid, pTi-SAKURA. , 2001, Genes & genetic systems.

[74]  P. H. Clarke,et al.  Genetics and biochemistry of pseudomonas , 1975 .

[75]  F. Ausubel,et al.  Plants and animals share functionally common bacterial virulence factors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[76]  M. Vasil,et al.  Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[77]  S. Lory,et al.  Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili , 1990, Journal of bacteriology.

[78]  J. Loper,et al.  Utilization of Heterologous Siderophores Enhances Levels of Iron Available to Pseudomonas putida in the Rhizosphere , 1999, Applied and Environmental Microbiology.

[79]  P. Cornelis,et al.  Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. , 2002, Environmental microbiology.

[80]  Maynard V. Olson,et al.  Genetic Variation at the O-Antigen Biosynthetic Locus in Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[81]  D. Hassett,et al.  Bacterioferritin A Modulates Catalase A (KatA) Activity and Resistance to Hydrogen Peroxide in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[82]  David A. D'Argenio,et al.  Autolysis and Autoaggregation in Pseudomonas aeruginosa Colony Morphology Mutants , 2002, Journal of bacteriology.

[83]  M. Franssen,et al.  Prospects for the increased application of biocatalysts in organic transformations. , 1993, Trends in biotechnology.

[84]  E. R. Olivera,et al.  The phenylacetyl‐CoA catabolon: a complex catabolic unit with broad biotechnological applications , 2001, Molecular microbiology.

[85]  P. I. Higgs,et al.  Interactions in the TonB-Dependent Energy Transduction Complex: ExbB and ExbD Form Homomultimers , 1998, Journal of bacteriology.

[86]  R. Kolter,et al.  Root colonization by Pseudomonas putida: love at first sight. , 2002, Microbiology.

[87]  F. D. de Bruijn,et al.  A New Genetic Locus in Sinorhizobium meliloti Is Involved in Stachydrine Utilization , 1998, Applied and Environmental Microbiology.

[88]  J. Ramos,et al.  Detection of multiple extracytoplasmic function (ECF) sigma factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PA01. , 2002, Environmental microbiology.

[89]  L. McCarter,et al.  Multiple Regulators Control Capsular Polysaccharide Production in Vibrio parahaemolyticus , 2003, Journal of bacteriology.

[90]  W. Achouak,et al.  Siderophore Typing, a Powerful Tool for the Identification of Fluorescent and Nonfluorescent Pseudomonads , 2002, Applied and Environmental Microbiology.

[91]  K. Timmis,et al.  Use of cloned genes of Pseudomonas TOL plasmid to effect biotransformation of benzoates to cis-dihydrodiols and catechols by Escherichia coli cells , 1985, Applied and environmental microbiology.

[92]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[93]  S. Farrand,et al.  Opine utilization by Agrobacterium spp.: octopine-type Ti plasmids encode two pathways for mannopinic acid degradation , 1988, Journal of bacteriology.

[94]  W Verstraete,et al.  Bioaugmentation of soils by increasing microbial richness: missing links. , 2001, Environmental microbiology.

[95]  L. Burrows,et al.  Genetics of O-Antigen Biosynthesis inPseudomonas aeruginosa , 1999, Microbiology and Molecular Biology Reviews.

[96]  P. Weisbeek,et al.  Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein , 1995, Molecular microbiology.

[97]  P. Visca,et al.  Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas , 2002, Molecular microbiology.

[98]  R. E. Tully,et al.  Beta-glucan synthesis in Bradyrhizobium japonicum: characterization of a new locus (ndvC) influencing beta-(1-->6) linkages , 1996, Journal of bacteriology.

[99]  K. Timmis,et al.  Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad , 1997, Nature Biotechnology.

[100]  G. Andersen,et al.  Molecular Characterization and Sequence of a Methionine Biosynthetic Locus from Pseudomonas syringae , 1998, Journal of bacteriology.

[101]  J. Mattick,et al.  Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa , 1993, Molecular microbiology.

[102]  K. Timmis,et al.  Bacteria designed for bioremediation. , 1999, Trends in biotechnology.

[103]  Kenneth N Timmis,et al.  Pseudomonas putida: a cosmopolitan opportunist par excellence. , 2002, Environmental microbiology.

[104]  M. Schumacher,et al.  Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors , 2002, Molecular microbiology.

[105]  K. Timmis,et al.  Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[106]  A. Anderson,et al.  Characterization and expression of the pseudomonas putida bacterioferritin alpha subunit gene. , 2000, Gene.

[107]  I. Beacham,et al.  Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator. , 2000, Microbiology.

[108]  Kurt Faber,et al.  Biotransformations in Organic Chemistry , 1992 .

[109]  O. White,et al.  Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. , 2002, Environmental microbiology.

[110]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[111]  J. Ramos,et al.  Cell envelope mutants of Pseudomonas putida: physiological characterization and analysis of their ability to survive in soil. , 1999, Environmental microbiology.

[112]  K. Timmis,et al.  Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. , 1987, Science.

[113]  E. Greenberg,et al.  Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[114]  S. Salzberg,et al.  Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.

[115]  J. García,et al.  Genomic Insights in the Metabolism of Aromatic Compounds in Pseudomonas , 2004 .

[116]  A. Matthysse Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection , 1983, Journal of bacteriology.