Wavelet methods in (financial) time-series processing

We briefly describe the major advantages of using the wavelet transform for the processing of financial time series on the example of the SP Fractals 8 (2) (2000) 163). We use it to display the local spectral (multifractal) contents of the S&P index. In addition to this, we analyse the collective properties of the local correlation exponent as perceived by the trader, exercising various time horizon analyses of the index. We observe an intriguing interplay between such (different) time horizons. Heavy oscillations at shorter time horizons, which seem to be accompanied by a steady decrease of correlation level for longer time horizons, seem to be characteristic patterns before the biggest crashes of the index. We find that this way of local presentation of scaling properties may be of economic importance.

[1]  Bruno Torrésani,et al.  Characterization of signals by the ridges of their wavelet transforms , 1997, IEEE Trans. Signal Process..

[2]  P. Cizeau,et al.  Statistical properties of the volatility of price fluctuations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Zbigniew R. Struzik,et al.  Revealing local variability properties of human heartbeat intervals with the local effective Hölder exponent , 2000 .

[6]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[7]  David J. Hand,et al.  Data Mining: Statistics and More? , 1998 .

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[10]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[11]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[12]  Marcel Ausloos,et al.  Coherent and random sequences in financial fluctuations , 1997 .

[13]  Jacques Lévy Véhel,et al.  Fractals: Theory and Applications in Engineering , 1999 .

[14]  D. Sornette,et al.  ”Direct” causal cascade in the stock market , 1998 .

[15]  V S L'vov,et al.  Outliers, extreme events, and multiscaling. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Didier Sornette,et al.  Stock market crashes are outliers , 1998 .

[18]  Shlomo Havlin,et al.  Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis , 1996, Nature.

[19]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[20]  Harry Eugene Stanley,et al.  Econophysics: can physicists contribute to the science of economics? , 1999, Comput. Sci. Eng..

[21]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[22]  Z. Struzik Determining Local Singularity Strengths and their Spectra with the Wavelet Transform , 2000 .

[23]  李幼升,et al.  Ph , 1989 .

[24]  Stéphane Jaffard,et al.  Multifractal formalism for functions part I: results valid for all functions , 1997 .

[25]  Matthias Holschneider,et al.  Wavelets - an analysis tool , 1995, Oxford mathematical monographs.

[26]  Howard M. Taylor,et al.  On the Distribution of Stock Price Differences , 1967, Oper. Res..

[27]  Marcel Ausloos,et al.  The crash of October 1987 seen as a phase transition: amplitude and universality , 1998 .

[28]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[29]  Zbigniew R. Struzik Local Effective Hölder Exponent Estimation on the Wavelet Transform Maxima Tree , 1999 .

[30]  L. Amaral,et al.  Can statistical physics contribute to the science of economics , 1996 .

[31]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .