Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy.

An extensive Fourier-transform infrared (FT-IR) spectroscopy database for the identification of bacteria from the two suborders Micrococcineae and Corynebacterineae (Actinomycetales, Actinobacteria) as well as other morphologically similar genera was established. The database consists of averaged IR spectra from 730 reference strains, covering 220 different species out of 46 genera. A total of 192 species are represented by type strains. The identity of 352 reference strains was determined by comparative 16S rDNA sequence analysis and, if necessary, strains were reclassified accordingly. FT-IR frequency ranges, weights and reproducibility levels were optimized for this section of high-G+C gram-positive bacteria. In an internal validation, 98.1% of 208 strains were correctly identified at the species level. A simulated external validation which was carried out using 544 strains from 54 species out of 16 genera resulted in a correct identification of 87.3% at the species level and 95.4% at the genus level. The performance of this identification system is well within the range of those having been reported in the literature for the identification of coryneform bacteria by phenotypical methods. Coryneform and related taxa display a certain degree of overlapping distribution of different taxonomical markers, leading to a limited differentiation capacity of non-genotypical identification methods in general. However, easy handling, rapid identification within 25 h starting from a single colony, a satisfactory differentiation capacity and low cost, render FT-IR technology clearly superior over other routine methods for the identification of coryneform bacteria and related taxa.

[1]  S. Scherer,et al.  Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. , 1998, International journal of systematic bacteriology.

[2]  H. Seiler Identification of cheese-smear coryneform bacteria , 1986, Journal of Dairy Research.

[3]  W. Bockelmann,et al.  The microflora of Tilsit cheese. Part 1. Variability of the smear flora , 1997 .

[4]  James R. Cole,et al.  The RDP (Ribosomal Database Project) continues , 2000, Nucleic Acids Res..

[5]  Dieter Naumann,et al.  Characterization and Identification of Micro-Organisms by FT-IR Spectroscopy and FT-IR Microscopy , 1994 .

[6]  S. Scherer,et al.  Identification of yeasts and coryneform bacteria from the surface microflora of brick cheeses. , 1997, International journal of food microbiology.

[7]  W. Ludwig,et al.  Two coryneform bacteria isolated from the surface of French Gruyère and Beaufort cheeses are new species of the genus Brachybacterium: Brachybacterium alimentarium sp. nov. and Brachybacterium tyrofermentans sp. nov. , 1996, International journal of systematic bacteriology.

[8]  F. Irlinger,et al.  Taxonomic Characterization of Coagulase-Negative Staphylococci in Ripening Flora from Traditional Fr , 1997 .

[9]  R. E. Buchanan,et al.  Bergey's Manual of Determinative Bacteriology. , 1975 .

[10]  A. Felske,et al.  Application of temperature-gradient gel electrophoresis in taxonomy of coryneform bacteria. , 1999, International journal of systematic bacteriology.

[11]  M Weizenegger,et al.  Bacterial phylogeny based on comparative sequence analysis (review) , 1998, Electrophoresis.

[12]  J Mergaert,et al.  Isolation and identification of cellulolytic bacteria involved in the degradation of natural cellulosic fibres. , 2000, Systematic and applied microbiology.

[13]  M. Collins,et al.  Turicella otitidis gen. nov., sp. nov., a coryneform bacterium isolated from patients with otitis media. , 1994, International journal of systematic bacteriology.

[14]  G. Jung,et al.  The Macrocyclic Peptide Antibiotic Micrococcin P1 Is Secreted by the Food-Borne Bacterium Staphylococcus equorumWS 2733 and Inhibits Listeria monocytogenes on Soft Cheese , 2000, Applied and Environmental Microbiology.

[15]  D. Balkwill,et al.  Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. , 2000, Microbiology.

[16]  P. Schumann,et al.  Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. , 1997, International journal of systematic bacteriology.

[17]  M. Teuber,et al.  Analysis of brevibacteria on the surface of Gruyère cheese detected by in situ hybridization and by colony hybridization , 1999 .

[18]  P. Kämpfer,et al.  Polyamine Distribution in Actinomycetes with Group B Peptidoglycan and Species of the Genera Brevibacterium, Corynebacterium, and Tsukamurella , 1997 .

[19]  Erko Stackebrandt,et al.  Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology , 1994 .

[20]  K. Schleifer,et al.  Union of the genera Cellulomonas Bergey et al. and Oerskovia Prauser et al. in a redefined genus Cellulomonas , 1982 .

[21]  M. Takeuchi,et al.  Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. , 1998, International journal of systematic bacteriology.

[22]  S. T. Cowan Bergey's Manual of Determinative Bacteriology , 1948, Nature.

[23]  R. Christen,et al.  Phylogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences. , 1995, International journal of systematic bacteriology.

[24]  R. Kroppenstedt,et al.  Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa , 1996 .

[25]  J. T. Staley,et al.  Arthrobacter, Brachybacterium and Planococcus isolates identified from antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov. , 1998, Systematic and applied microbiology.

[26]  P. Lawson,et al.  Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. , 1995, International journal of systematic bacteriology.

[27]  D B Kell,et al.  Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. , 1998, Microbiology.

[28]  E. Stackebrandt,et al.  Further evidence for the phylogenetic coherence of actinomycetes with Group B-peptidoglycan and evidence for the phylogenetic intermixing of the genera Microbacterium and Aureobacterium as determined by 16S rDNA analysis , 1994 .

[29]  G. Fox,et al.  How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. , 1992, International journal of systematic bacteriology.

[30]  K. Bernard,et al.  Clinical microbiology of coryneform bacteria , 1997, Clinical microbiology reviews.

[31]  P. Kämpfer,et al.  NUMERICAL CLASSIFICATION OF CORYNEFORM BACTERIA AND RELATED TAXA , 1993 .

[32]  H. Noller,et al.  Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Holt,et al.  Discrimination of species in the genus Listeria by Fourier transform infrared spectroscopy and canonical variate analysis , 1995, Applied and environmental microbiology.

[34]  P. Schumann,et al.  Polyamine profiles within genera of the class Actinobacteria with LL-diaminopimelic acid in the peptidoglycan. , 1999, International journal of systematic bacteriology.

[35]  B. Patel,et al.  Three isolates of novel polyphosphate-accumulating gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. , 2000, International journal of systematic and evolutionary microbiology.

[36]  Harald Labischinski,et al.  Elaboration of a procedure for identification of bacteria using Fourier-Transform IR spectral libraries: a stepwise correlation approach , 1991 .

[37]  Royston Goodacre,et al.  Rapid Differentiation of Closely RelatedCandida Species and Strains by Pyrolysis-Mass Spectrometry and Fourier Transform-Infrared Spectroscopy , 1998, Journal of Clinical Microbiology.

[38]  J. Freney,et al.  Multicenter evaluation of the updated and extended API (RAPID) Coryne database 2.0 , 1997, Journal of clinical microbiology.

[39]  K. Komagata,et al.  Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate "Curtobacterium psychrophilum" Inoue and Komagata 1976. , 1997, International journal of systematic bacteriology.

[40]  E. Stackebrandt,et al.  Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. , 2000, International journal of systematic and evolutionary microbiology.

[41]  G. Funke,et al.  Evaluation of the RapID CB Plus System for Identification of Coryneform Bacteria and Listeriaspp , 1998, Journal of Clinical Microbiology.

[42]  Jean-Jacques Sanglier,et al.  Characterization and identification of actinomycetes by FT-IR spectroscopy , 1996 .

[43]  K. Neuhaus,et al.  Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting of 16S rDNA , 1998 .

[44]  E. Stackebrandt,et al.  Proposal for a New Hierarchic Classification System, Actinobacteria classis nov. , 1997 .

[45]  F. Rainey,et al.  Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. , 2000, International journal of systematic and evolutionary microbiology.

[46]  M. Teuber,et al.  Development of 16S rRNA Oligonucleotide Probes for Brevibacterium, Micrococcus/Arthrobacter and Micr , 1997 .

[47]  J. E. Sanders,et al.  Renibacterium salmoninarum gen. nov., sp. nov., the causative agent of bacterial kidney disease in salmonid fishes. , 1980 .

[48]  K. Komagata,et al.  Rarobacter faecitabidus gen. nov., sp. nov., a Yeast-Lysing Coryneform Bacterium , 1988 .

[49]  S. Scherer,et al.  Analysis of the bacterial surface ripening flora of German and French smeared cheeses with respect to their anti-listerial potential. , 1999, International journal of food microbiology.

[50]  E. Stackebrandt,et al.  Cultivatable microbial biodiversity: gnawing at the Gordian knot. , 2000, Environmental microbiology.