Model predictive control of thermal effects of an atmospheric pressure plasma jet for biomedical applications

This paper investigates the application of model predictive control (MPC) for regulating the thermal effects of an atmospheric pressure plasma jet (APPJ). The control objective is to deliver a predetermined thermal dosage to a target surface without inducing any thermal damage. To this end, a nonlinear thermal model is developed for the APPJ under study, and a MPC strategy is designed through repeated linearization of the nonlinear model along the operating trajectory. The performance of the MPC strategy is demonstrated in simulations.

[1]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[2]  Mounir Laroussi,et al.  Plasma Medicine: Applications of Low-temperature Gas Plasmas in Medicine and Biology , 2012 .

[3]  Jaeyoung Park,et al.  The atmospheric-pressure plasma jet: a review and comparison to other plasma sources , 1998 .

[4]  Ronny Brandenburg,et al.  Atmospheric Pressure Plasma Jet for Medical Therapy: Plasma Parameters and Risk Estimation , 2009 .

[5]  V. N. Vasilets,et al.  Plasma medicine , 2012 .

[6]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[7]  Claus Danielson,et al.  Model predictive control for treating cancer with ultrasonic heating , 2015, 2015 American Control Conference (ACC).

[8]  K. Weltmann,et al.  Plasma jet's shielding gas impact on bacterial inactivation. , 2015, Biointerphases.

[9]  K. Weltmann,et al.  Atmospheric pressure streamer follows the turbulent argon air boundary in a MHz argon plasma jet investigated by OH-tracer PLIF spectroscopy , 2014 .

[10]  M. Morari,et al.  Internal model control: PID controller design , 1986 .

[11]  David B. Graves,et al.  Low temperature plasma biomedicine: A tutorial reviewa) , 2014 .

[12]  Cheng‐Che Hsu,et al.  Mode Transition of an Atmospheric Pressure Arc Plasma Jet Sustained by Pulsed DC Power , 2009 .

[13]  James L. Walsh,et al.  Three distinct modes in a cold atmospheric pressure plasma jet , 2010 .

[14]  Roger A. Haas,et al.  Plasma Stability of Electric Discharges in Molecular Gases , 1973 .

[15]  P. Brun,et al.  Helium Generated Cold Plasma Finely Regulates Activation of Human Fibroblast-Like Primary Cells , 2014, PloS one.

[16]  W. Dewey,et al.  Thermal dose determination in cancer therapy. , 1984, International journal of radiation oncology, biology, physics.

[17]  Michael G. Kong,et al.  Sub-60 °C atmospheric helium–water plasma jets: modes, electron heating and downstream reaction chemistry , 2011 .

[18]  J. Benedikt,et al.  Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure , 2011, 1109.3072.

[19]  Dhiraj Arora,et al.  Model-predictive control of hyperthermia treatments , 2002, IEEE Transactions on Biomedical Engineering.

[20]  H. H. Pennes Analysis of tissue and arterial blood temperatures in the resting human forearm. , 1948, Journal of applied physiology.

[21]  Pascal Tristant,et al.  Atmospheric pressure plasmas: A review , 2006 .

[22]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[23]  P. J. Hoopes,et al.  Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia , 2003, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[24]  Morten Knudsen,et al.  Identification of Thermal Model for Human Tissue , 1986, IEEE Transactions on Biomedical Engineering.

[25]  J. Pouvesle,et al.  Experimental Study of a Compact Nanosecond Plasma Gun , 2009 .

[26]  D. V. Hoff,et al.  Head and neck cancer treatment and physical plasma , 2015 .

[27]  Etching materials with an atmospheric-pressure plasma jet , 1998 .

[28]  Stephan Reuter,et al.  Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry , 2013 .