RELATIVISTIC STELLAR MODEL ADMITTING A QUADRATIC EQUATION OF STATE

A class of solutions describing the interior of a static spherically symmetric compact anisotropic star is reported. The analytic solution has been obtained by utilizing the Finch and Skea [Class. Quantum Grav.6 (1989) 467] ansatz for the metric potential grr which has a clear geometric interpretation for the associated background spacetime. Based on physical grounds, appropriate bounds on the model parameters have been obtained and it has been shown that the model admits an equation of state (EOS) which is quadratic in nature.

[1]  S. Maharaj,et al.  Regular models with quadratic equation of state , 2012, 1301.1418.

[2]  S. Ray,et al.  Strange stars in Krori–Barua space-time , 2011, 1108.6125.

[3]  P. K. Chattopadhyay,et al.  Relativistic strange stars with anisotropy , 2011 .

[4]  Azad A. Siddiqui,et al.  Charged anisotropic matter with quadratic equation of state , 2011 .

[5]  S. Ray,et al.  Charged anisotropic matter with linear or nonlinear equation of state , 2010, 1004.2165.

[6]  B. Ivanov The Importance of Anisotropy for Relativistic Fluids with Spherical Symmetry , 2010 .

[7]  S. Maharaj,et al.  Charged anisotropic matter with a linear equation of state , 2008, 0810.3809.

[8]  B. S. Ratanpal,et al.  NON-ADIABATIC GRAVITATIONAL COLLAPSE WITH ANISOTROPIC CORE , 2007 .

[9]  S. Mukherjee,et al.  The role of pressure anisotropy on the maximum mass of cold compact stars , 2007, 0708.3305.

[10]  Kanti R. Jotania,et al.  On relativistic models of strange stars , 2007 .

[11]  S. Maharaj,et al.  A class of relativistic stars with a linear equation of state , 2007, gr-qc/0702046.

[12]  M. Bruni,et al.  Cosmological dynamics and dark energy with a nonlinear equation of state: a quadratic model , 2005, astro-ph/0512224.

[13]  S. Maharaj,et al.  New anisotropic models from isotropic solutions , 2005, gr-qc/0510073.

[14]  U. Heinz Equation of State and Collective Dynamics , 2005, nucl-th/0504011.

[15]  V. O. Thomas,et al.  A relativistic core-envelope model on pseudospheroidal space-time , 2005 .

[16]  B. S. Ratanpal,et al.  CORE-ENVELOPE MODELS OF SUPERDENSE STAR WITH ANISOTROPIC ENVELOPE , 2005 .

[17]  A. Dev,et al.  DARK ENERGY AND THE STATISTICAL STUDY OF THE OBSERVED IMAGE SEPARATIONS OF THE MULTIPLY-IMAGED SYSTEMS IN THE CLASS STATISTICAL SAMPLE , 2003, astro-ph/0307441.

[18]  F. Karsch,et al.  Thermodynamics and In-Medium Hadron Properties from Lattice QCD , 2003, hep-lat/0305025.

[19]  M. Gleiser,et al.  Anisotropic Stars II: Stability , 2003, gr-qc/0303077.

[20]  T. Harko,et al.  Anisotropic stars in general relativity , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Ranjan Sharma,et al.  A GENERAL RELATIVISTIC MODEL FOR SAX J1808.4-3658 , 2002 .

[22]  B. Ivanov Maximum bounds on the surface redshift of anisotropic stars , 2002 .

[23]  T. Harko,et al.  Anisotropic relativistic stellar models , 2001, Annalen der Physik.

[24]  T. Harko,et al.  Maximum mass-radius ratios for charged compact general relativistic objects , 2001, gr-qc/0107011.

[25]  S. Maharaj,et al.  General Solution for a Class of Static Charged Spheres , 2001 .

[26]  Ranjan Sharma,et al.  HER X-1: A QUARK–DIQUARK STAR? , 2001 .

[27]  M. Gleiser,et al.  Anisotropic Stars: Exact Solutions , 2000, astro-ph/0012265.

[28]  Ranjan Sharma,et al.  SCALING PROPERTY IN COLD COMPACT STARS , 2000 .

[29]  K. Lake,et al.  Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations , 1998, gr-qc/9809013.

[30]  N. Dadhich,et al.  General solution for a relativistic star , 1997 .

[31]  L. Herrera,et al.  Local anisotropy in self-gravitating systems , 1997 .

[32]  S. Maharaj,et al.  Exact solutions for the Tikekar superdense star , 1996 .

[33]  A. Mehra,et al.  Anisotropic spheres with variable energy density in general relativity , 1994 .

[34]  L. Herrera Cracking of self-gravitating compact objects , 1992 .

[35]  R. Tikekar Exact model for a relativistic star , 1990 .

[36]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[37]  R. Maartens,et al.  Anisotropic spheres with uniform energy density in general relativity , 1989 .

[38]  J. Skea,et al.  A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .

[39]  H. Knutsen On the stability and physical properties of an exact relativistic model for a superdense star , 1988 .

[40]  K. Krori,et al.  Some exact anisotropic solutions in general relativity , 1984 .

[41]  S. Bayin Anisotropic fluid spheres in general relativity , 1982 .

[42]  R. Tikekar,et al.  Exact relativistic model for a superdense star , 1982 .

[43]  A. Sokolov Phase transitions in a superfluid neutron liquid , 1980 .

[44]  E. Liang,et al.  Anisotropic spheres in general relativity , 1974 .

[45]  M. Ruderman Pulsars: Structure and Dynamics , 1972 .