Diskrete Approximation von Eigenwertproblemen

1. Einleitung Die Existenz asymptotischer Entwicklungen kann bei vieIen numerischen Verfahren sehr vorteilhaft ausgenutzt werden. Die auf [16, 4] zurfickgehende Idee hat z.B. mit der Romberg-Integration (s. L9, t0]) und mit dem Verfahren von Gragg-Bulirsch-Stoer [2, 3] bei gew6hnlichen Anfangswertaufgaben zur Aufstellung ~uBerst wirkungsvoller numerischer Prozeduren geftihrt. Ftir eine Ubersicht vgl. die Arbeiten [t0, t9]. Die vorliegende Arbeit besch~ftigt sich in einem allgemeinen Rahmen mit der Existenz asymptotischer Entwicklungen ftir die Eigenwerte und Hauptvektoren bei der n~herungsweisen L/~sung des Eigenwertproblems

[1]  George J. Fix EFFECTS OF QUADRATURE ERRORS IN FINITE ELEMENT APPROXIMATION OF STEADY STATE, EIGENVALUE AND PARABOLIC PROBLEMS , 1972 .

[2]  Heinz-Otto Kreiss,et al.  Difference approximations for boundary and eigenvalue problems for ordinary differential equations , 1972 .

[3]  H. Jeggle Über die Approximation von linearen Gleichungen zweiter Art und Eigenwertproblemen in Banach-Räumen , 1972 .

[4]  B. Hubbard Eigenvalues of the non-homogeneous rectangular membrane by finite difference methods , 1962 .

[5]  J. Kuttler Finite Difference Approximations for Eigenvalues of Uniformly Elliptic Operators , 1970 .

[6]  C. Baker The Deferred Approach to the Limit for Eigenvalues of Integral Equations , 1971 .

[7]  George J. Fix,et al.  Eigenvalue approximation by the finite element method , 1973 .

[8]  J. Bramble,et al.  Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .

[9]  Françoise Chatelin,et al.  Convergence of Approximation Methods to Compute Eigenelements of Linear Operations , 1973 .

[10]  J. Gillis,et al.  Numerical Solution of Ordinary and Partial Differential Equations , 1963 .

[11]  J. Stoer,et al.  Numerical treatment of ordinary differential equations by extrapolation methods , 1966 .

[12]  H. Keller Numerical Solution of Two Point Boundary Value Problems , 1976 .

[13]  Philippe G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value problems , 1968 .

[14]  C. D. Boor,et al.  Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .

[15]  H. Schönheinz Eigenwerteinschließung bei gewöhnlichen Differentialgleichungen über ein Differenzenverfahren , 1969 .

[16]  P. Anselone,et al.  SPECTRAL ANALYSIS OF COLLECTIVELY COMPACT, STRONGLY CONVERGENT OPERATOR SEQUENCES , 1968 .

[17]  V. Pereyra On improving an approximate solution of a functional equation by deferred corrections , 1966 .

[18]  Perturbation of eigenvalues with an engineering application , 1969 .

[19]  Rolf Dieter Grigorieff Zur Theorie linearer approximationsregulärer Operatoren. I , 1973 .

[20]  Singular perturbations of elliptic sesquilinear forms , 1972 .

[21]  J. Gary Computing eigenvalues of ordinary differential equations by finite differences , 1965 .

[22]  Tosio Kato,et al.  On the convergence of the perturbation method , 1951 .

[23]  R. Grigorieff,et al.  Diskrete Approximation von Eigenwertproblemen , 1975 .

[24]  P. Linz Error estimates for the computation of eigenvalues of self-adjoint operators , 1972 .

[25]  L. Fox,et al.  The numerical solution of non-singular linear integral equations , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[26]  Ivo Babuška,et al.  Lectures on mathematical foundations of the finite element method. , 1972 .

[27]  P. Linz On the numerical computation of eigenvalues and eigenvectors of symmetric integral equations , 1970 .

[28]  B. Hubbard Bounds for eigenvalues of the Sturm-Liouville problem by finite difference methods , 1962 .

[29]  Richard S. Varga,et al.  Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: 2. Improved error bounds for eigenfunctions , 1972 .

[30]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[31]  Rolf Dieter Grigorieff Über die Lösung regulärer koerzitiver Rand- und Eigenwertaufgaben mit dem Galerkinverfahren , 1969 .

[32]  Herbert B. Keller On the accuracy of finite difference approximations to the eigenvalues of differential and integral operators , 1965 .

[33]  G. M. Vainikko On the speed of convergence of approximate methods in the eigenvalue problem , 1967 .

[34]  Hans F. Weinberger,et al.  Upper and lower bounds for eigenvalues by finite difference methods , 1956 .

[35]  Evaluation of the error in finding eigenvalues by the method of finite differences , 1965 .

[36]  H. Brakhage,et al.  Zur Fehlerabschätzung für die numerische Eigenwertbestimmung bei integralgleichungen , 1961 .

[37]  P. G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value Problems , 1968 .

[38]  W. M. Greenlee Perturbation of eigenvalues with an engineering application—A supplement , 1969 .

[39]  Rolf Dieter Grigorieff Approximation von Eigenwertproblemen und Gleichungen zweiter Art in Hilbertschen Räumen , 1969 .

[40]  Rolf Dieter Grigorieff Die Konvergenz des Rand- und Eigenwertproblems linearer gewöhnlicher Differenzengleichungen , 1970 .

[41]  Friedrich Stummel,et al.  Diskrete Konvergenz linearer Operatoren. II , 1971 .

[42]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[43]  Burton Wendroff Bounds for Eigenvalues of Some Differential Operators by the Rayleigh-Ritz Method , 1965 .

[44]  Jochen W. Schmidt,et al.  Fehlerschranken für die Genäherte Lösung von Rand- und Eigenwertaufgaben bei Gewöhnlichen Differentialgleichungen durch Differenzenverfahren , 1968 .

[45]  J. Baxley Eigenvalues of singular differential operators by finite difference methods, II , 1972 .

[46]  B. Hubbard Bounds for eigenvalues of the free and fixed membrane by finite difference methods. , 1961 .

[47]  Tosio Kato,et al.  On the Convergence of the Perturbation Method, II. 1 , 1950 .

[48]  Hans F. Weinberger,et al.  Lower bounds for higher eigenvalues by finite difference methods. , 1958 .

[49]  Olof B. Widlund,et al.  Some recent applications of asymptotic error expansions to finite-difference schemes , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[50]  Tosio Kato Perturbation theory for linear operators , 1966 .

[51]  D. C. Joyce Survey of Extrapolation Processes in Numerical Analysis , 1971 .

[52]  Hans J. Stetter,et al.  Asymptotic expansions for the error of discretization algorithms for non-linear functional equations , 1965 .

[53]  Josef Stoer,et al.  Asymptotic upper and lower bounds for results of extrapolation methods , 1966 .

[54]  K. Atkinson THE NUMERICAL SOLUTION OF THE EIGENVALUE PROBLEM FOR COMPACT INTEGRAL OPERATORS , 2008 .

[55]  J. Bramble,et al.  Effects of Boundary Regularity on the Discretization Error in the Fixed Membrane Eigenvalue Problem , 1968 .

[56]  Richard S. Varga,et al.  Higher Order Convergence Results for the Rayleigh–Ritz Method Applied to Eigenvalue Problems. I: Estimates Relating Rayleigh–Ritz and Galerkin Approximations to Eigenfunctions , 1972 .

[57]  John E. Osborn,et al.  APPROXIMATION OF STEKLOV EIGENVALUES OF NON-SELFADJOINT SECOND ORDER ELLIPTIC OPERATORS , 1972 .

[58]  Friedrich Stummel,et al.  Diskrete Konvergenz linearer Operatoren. I , 1970 .