Confinement Induced Preferential Orientation of Crystals and Enhancement of Properties in Ferroelectric Polymer Nanowires.

The physical properties of polymers strongly depend on the molecular or supermolecular order and orientation. Here we demonstrate the preferential orientation of lamellar crystals and the enhancement of ferro/piezoelectric properties in individual poly- (vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) nanowires fabricated from anodic alumina oxide (AAO) templates. The crystallographic a axis of P(VDF-TrFE) was found to be aligned along the long axis of nanowires due to geometrical confinement and grapho-expitaxial crystals growth. The alignment of lamellar crystals in P(VDF-TrFE) nanowires and enhancement of crystallization translated into improved ferro/piezoelectric properties such as lower coercive field and higher piezoelectric coefficient, testified by piezoresponse force microscopy images and piezoresponse hysteresis loops.

[1]  E. Bellet-Amalric,et al.  Crystalline structures and phase transition of the ferroelectric P(VDF-TrFE) copolymers, a neutron diffraction study , 1998 .

[2]  Klaus Reimann,et al.  Multilevel Information Storage in Ferroelectric Polymer Memories , 2011, Advanced materials.

[3]  Kamal Asadi,et al.  Organic non-volatile memories from ferroelectric phase-separated blends. , 2008, Nature materials.

[4]  Zhijun Hu,et al.  Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. , 2009, Nature materials.

[5]  Stephen Ducharme,et al.  Ferroelectrics: Start the presses. , 2009, Nature materials.

[6]  Youn Jung Park,et al.  Nonvolatile polymer memory with nanoconfinement of ferroelectric crystals. , 2011, Nano letters.

[7]  Ryan,et al.  Polymer crystallization in 25-nm spheres , 2000, Physical review letters.

[8]  Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As. , 2008, Nature materials.

[9]  Youn Jung Park,et al.  Irreversible extinction of ferroelectric polarization in P(VDF-TrFE) thin films upon melting and recrystallization , 2006 .

[10]  Yang Yang,et al.  Efficiency enhancement in organic solar cells with ferroelectric polymers. , 2011, Nature materials.

[11]  T. Bein,et al.  Confinement in oriented mesopores induces piezoelectric behavior of polymeric nanowires , 2012 .

[12]  T. Russell,et al.  Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene fluoride-co-trifluoroethylene) , 2010 .

[13]  Y. Hwang,et al.  Enhanced mobility of confined polymers. , 2007, Nature materials.

[14]  Yongri Liang,et al.  Transition from Nanorod to Nanotube of Poly(vinylidene trifluoroethylene) Ferroelectric Nanofiber , 2013 .

[15]  F. Kremer,et al.  Density fluctuations and phase transitions of ferroelectric polymer nanowires. , 2010, Small.

[16]  Gerwin H. Gelinck,et al.  High-performance solution-processed polymer ferroelectric field-effect transistors , 2005 .

[17]  T. Furukawa Ferroelectric properties of vinylidene fluoride copolymers , 1989 .

[18]  C. Ober,et al.  Recent progress in high resolution lithography , 2006 .

[19]  Dirk N. Weiss,et al.  Rapid nanoimprinting and excellent piezoresponse of polymeric ferroelectric nanostructures. , 2010, ACS nano.

[20]  Szu-Hung Chen,et al.  Enhanced Piezoelectricity of Nanoimprinted Sub-20 nm Poly(vinylidene fluoride–trifluoroethylene) Copolymer Nanograss , 2012 .

[21]  S. Ducharme,et al.  Ferroelectric control of magnetic anisotropy. , 2011, Nano letters.

[22]  H. Fuchs,et al.  Fabrication of High‐Density, Large‐Area Conducting‐Polymer Nanostructures , 2006 .

[23]  K. Suh,et al.  A nontransferring dry adhesive with hierarchical polymer nanohairs , 2009, Proceedings of the National Academy of Sciences.

[24]  Yongbo Yuan,et al.  Tuning the Energy Level Offset between Donor and Acceptor with Ferroelectric Dipole Layers for Increased Efficiency in Bilayer Organic Photovoltaic Cells , 2012, Advanced materials.

[25]  Nathan J. Sniadecki,et al.  Geometric Considerations of Micro‐ to Nanoscale Elastomeric Post Arrays to Study Cellular Traction Forces , 2007 .

[26]  Kurt Busch,et al.  Three‐Dimensional Nanostructures for Photonics , 2010 .

[27]  H. Alshareef,et al.  High‐Performance Non‐Volatile Organic Ferroelectric Memory on Banknotes , 2012, Advanced materials.

[28]  K. Seah,et al.  Ferroelectric Poly(vinylidene fluoride) Homopolymer Nanotubes Derived from Solution in Anodic Alumina Membrane Template , 2013 .

[29]  A. Gruverman,et al.  High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers. , 2011, Nano letters.

[30]  K. No,et al.  Fabrication of Vertically Well‐Aligned P(VDF‐TrFE) Nanorod Arrays , 2012, Advanced materials.

[31]  J. Appenzeller,et al.  FeTRAM. An organic ferroelectric material based novel random access memory cell. , 2011, Nano letters.