Solution Landscapes in the Landau-de Gennes Theory on Rectangles

We study nematic equilibria on rectangular domains, in a reduced two-dimensional Landau-de Gennes framework. We have one essential model variable---$\tilde{\epsilon}$ which is a geometry-dependent and material-dependent variable. We analytically study two distinguished limits---the $\tilde{\epsilon} \to 0$ limit which is relevant for macroscopic domains and the $\tilde{\epsilon} \to \infty$ limit which is relevant for nano-scale domains. We report a new stable nematic state featured by thin transition layers near the shorter rectangular edges, in the nano-scale limit. We numerically compute bifurcation diagrams for the solution landscapes as a function of $\tilde{\epsilon}$ and the rectangular aspect ratio. We also investigate relaxation mechanisms for non-trivial topologies and how such mechanisms are dominated by defect annihilation, near vertices or in the interior, or through transient almost isotropic states and such relaxation mechanisms have potential relevance for switching mechanisms in nematic-based devices.

[1]  J. Alvarado,et al.  Colloidal liquid crystals in rectangular confinement: theory and experiment. , 2014, Soft matter.

[2]  Giuseppe Buttazzo,et al.  Calculus of Variations and Partial Differential Equations , 1988 .

[3]  N. Sheibani,et al.  Paris , 1894, The Hospital.

[4]  Xavier Lamy,et al.  Bifurcation Analysis in a Frustrated Nematic Cell , 2013, J. Nonlinear Sci..

[5]  Carl Tim Kelley,et al.  Numerical methods for nonlinear equations , 2018, Acta Numerica.

[6]  N. Abbott,et al.  Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals , 2003, Science.

[7]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[8]  A. Majumdar,et al.  Radial symmetry on three-dimensional shells in the Landau-de Gennes theory , 2014, 1409.0143.

[9]  A. Majumdar,et al.  LETTER TO THE EDITOR: Elastic energy of liquid crystals in convex polyhedra , 2004 .

[10]  Apala Majumdar,et al.  Order Reconstruction for Nematics on Squares and Hexagons: A Landau-de Gennes Study , 2017, SIAM J. Appl. Math..

[11]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[12]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[13]  Apala Majumdar,et al.  From molecular to continuum modelling of bistable liquid crystal devices , 2017 .

[14]  Birendra Bahadur,et al.  Liquid Crystals — Applications and Uses , 1992 .

[15]  Iain W. Stewart The static and dynamic continuum theory of liquid crystals , 2004 .

[16]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[17]  C Tsakonas,et al.  Multistable alignment states in nematic liquid crystal filled wells , 2007 .

[18]  Frédéric Hélein,et al.  Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .

[19]  R. Ignat,et al.  Instability of point defects in a two-dimensional nematic liquid crystal model , 2015, 1503.03670.

[20]  Michael R. Novack Dimension Reduction for the Landau-de Gennes Model: The Vanishing Nematic Correlation Length Limit , 2018, SIAM J. Math. Anal..

[21]  Apala Majumdar,et al.  Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond , 2008, 0812.3131.

[22]  J. Lagerwall,et al.  A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology , 2012 .

[23]  E. Virga,et al.  Finite-size effects on order reconstruction around nematic defects. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Dmitry Golovaty,et al.  Dimension Reduction for the Landau-de Gennes Model on Curved Nematic Thin Films , 2015, J. Nonlinear Sci..

[25]  Apala Majumdar,et al.  A Reduced Study for Nematic Equilibria on Two-Dimensional Polygons , 2019, SIAM J. Appl. Math..

[26]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[27]  Shah,et al.  Electrochemical principles for active control of liquids on submillimeter scales , 1999, Science.

[28]  Patrick J. Roa Volume 8 , 2001 .

[29]  Apala Majumdar,et al.  Multistability in planar liquid crystal wells. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Apala Majumdar,et al.  Order Reconstruction for Nematics on Squares with Isotropic Inclusions: A Landau-De Gennes Study , 2018, SIAM J. Appl. Math..

[31]  A. Isihara,et al.  Theory of Liquid Crystals , 1972 .

[32]  A. Majumdar,et al.  Order reconstruction patterns in nematic liquid crystal wells , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  N. Mottram,et al.  Nematic liquid crystal director structures in rectangular regions. , 2018, Physical review. E.

[34]  A. Majumdar,et al.  Free energy pathways of a multistable liquid crystal device. , 2015, Soft matter.

[35]  Durand,et al.  Disorientation-induced disordering at a nematic-liquid-crystal-solid interface. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[36]  W. H. Toliver,et al.  Liquid Crystals , 1912, Nature.

[37]  A. Majumdar,et al.  The Well Order Reconstruction Solution for three-dimensional wells, in the Landau–de Gennes theory , 2019, International Journal of Non-Linear Mechanics.

[38]  A. Lewis Defects in liquid crystals: mathematical and experimental studies , 2015 .

[39]  S. Wereley,et al.  Soft Matter , 2014 .

[40]  Dmitry Golovaty,et al.  Dimension Reduction for the Landau-de Gennes Model in Planar Nematic Thin Films , 2015, Journal of Nonlinear Science.