Apatite geochemistry from mafic rocks in the northeastern North China Craton: New insights into petrogenesis

[1]  Wenliang Xu,et al.  Petrogenesis of Jurassic granitic plutons in Liaodong Peninsula, NE China: Insights into the subduction of Paleo−Pacific plate , 2022, Journal of Asian Earth Sciences.

[2]  De‐Bin Yang,et al.  Modification of the lithospheric mantle induced by recycled crustal components: Insights from Early Cretaceous appinites from the Liaodong Peninsula, NE China , 2022, GSA Bulletin.

[3]  Wenliang Xu,et al.  Reworking of continental crust on northeastern North China Craton: Evidence from geochronology and geochemistry of Early Cretaceous granitic rocks , 2022, Tectonophysics.

[4]  C. Kirkland,et al.  An apatite to unravel petrogenic processes of the Nova-Bollinger Ni-Cu magmatic sulfide deposit, Western Australia , 2022, Precambrian Research.

[5]  Peter A. Cawood,et al.  In situ geochemical composition of apatite in granitoids from the eastern Central Asian Orogenic Belt: A window into petrogenesis , 2021, Geochimica et Cosmochimica Acta.

[6]  P. Were,et al.  Trace element fractionation between biotite, allanite, and granitic melt , 2021, Contributions to Mineralogy and Petrology.

[7]  A. Wilson,et al.  Zircon melt inclusions in mafic and felsic rocks of the Bushveld Complex – Constraints for zircon crystallization temperatures and partition coefficients , 2020 .

[8]  M. Guitreau,et al.  Understanding Preservation of Primary Signatures in Apatite by Comparing Matrix and Zircon‐Hosted Crystals From the Eoarchean Acasta Gneiss Complex (Canada) , 2020, Geochemistry, Geophysics, Geosystems.

[9]  Wenliang Xu,et al.  Tectonic evolution of the northeastern North China Craton: Constraints from geochronology and Sr–Nd–Hf–O isotopic data from Late Triassic intrusive rocks on Liaodong Peninsula, NE China , 2020 .

[10]  Yong‐Fei Zheng,et al.  Chemical geodynamics of mafic magmatism above subduction zones , 2020 .

[11]  G. O’Sullivan,et al.  The trace element composition of apatite and its application to detrital provenance studies , 2020 .

[12]  P. Hollings,et al.  Multi-stage arc magma evolution recorded by apatite in volcanic rocks , 2020, Geology.

[13]  Yigang Xu,et al.  The subduction of the west Pacific plate and the destruction of the North China Craton , 2019, Science China Earth Sciences.

[14]  Wenliang Xu,et al.  New insights on the early Mesozoic evolution of multiple tectonic regimes in the northeastern North China Craton from the detrital zircon provenance of sedimentary strata , 2018, Solid Earth.

[15]  G. O’Sullivan,et al.  The trace element and U-Pb systematics of metamorphic apatite , 2018 .

[16]  Wenliang Xu,et al.  Sedimentary response to the paleogeographic and tectonic evolution of the southern North China Craton during the late Paleozoic and Mesozoic , 2017 .

[17]  J. Darling,et al.  Apatite trace element and isotope applications to petrogenesis and provenance , 2017 .

[18]  T. Huo,et al.  Tectonic implications of Early Cretaceous low-Mg adakitic rocks generated by partial melting of thickened lower continental crust at the southern margin of the central North China Craton , 2016 .

[19]  C. Hart,et al.  Hydrothermal Alteration Revealed by Apatite Luminescence and Chemistry: A Potential Indicator Mineral for Exploring Covered Porphyry Copper Deposits , 2016 .

[20]  B. Upton,et al.  Compositional variation of apatite from rift-related alkaline igneous rocks of the Gardar Province, South Greenland , 2016 .

[21]  D. Ma,et al.  Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi–Hang zone, China: Implications for petrogenesis and metallogenesis , 2015 .

[22]  D. Jacob,et al.  Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: The Ilimaussaq complex, South Greenland , 2015 .

[23]  J. Webster,et al.  Magmatic Apatite: A Powerful, Yet Deceptive, Mineral , 2015 .

[24]  John M. Hughes,et al.  Structurally Robust, Chemically Diverse: Apatite and Apatite Supergroup Minerals , 2015 .

[25]  D. Chew,et al.  Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface , 2015 .

[26]  D. Harlov Apatite: A Fingerprint for Metasomatic Processes , 2015 .

[27]  M. Marks,et al.  Equilibrium partitioning and subsequent re-distribution of halogens among apatite-biotite-amphibole assemblages from mantle-derived plutonic rocks: Complexities revealed , 2015 .

[28]  V. Morra,et al.  Trace-element partitioning between plagioclase, alkali feldspar, Ti-magnetite, biotite, apatite, and evolved potassic liquids from Campi Flegrei (Southern Italy) , 2015 .

[29]  C. Storey,et al.  Accessory mineral chemistry of high Ba-Sr granites from northern Scotland: constraints on petrogenesis and records of whole-rock signature , 2014 .

[30]  C. Hawkesworth,et al.  Apatite: A new redox proxy for silicic magmas? , 2014 .

[31]  Håvard Gautneb,et al.  Characterization of apatite resources in Norway and their REE potential — A review , 2014 .

[32]  J. Lavé,et al.  Continental sedimentary processes decouple Nd and Hf isotopes , 2013 .

[33]  Wenjiao Xiao,et al.  Introduction to tectonics of China , 2013 .

[34]  C. Hawkesworth,et al.  Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon , 2013, Contributions to Mineralogy and Petrology.

[35]  Wenliang Xu,et al.  Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr–Nd–Pb isotopes in Mesozoic mafic igneous rocks , 2012 .

[36]  A. Stepanov,et al.  Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks , 2012 .

[37]  C. Hawkesworth,et al.  Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so , 2011 .

[38]  Wenliang Xu,et al.  Geochronology and geochemistry of Mesozoic mafic–ultramafic complexes in the southern Liaoning and southern Jilin provinces, NE China: Constraints on the spatial extent of destruction of the North China Craton , 2011 .

[39]  D. Cherniak Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and Xenotime , 2010 .

[40]  W. Griffin,et al.  Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids , 2009 .

[41]  J. Rønsbo Apatite in the Ilímaussaq alkaline complex: Occurrence, zonation and compositional variation , 2008 .

[42]  J. Bédard Trace element partitioning coefficients between silicate melts and orthopyroxene: Parameterizations of D variations , 2007 .

[43]  S. Klemme,et al.  Rare earth element partitioning between titanite and silicate melts: Henry's law revisited , 2006 .

[44]  S. Klemme,et al.  Trace element partitioning between apatite and silicate melts , 2006 .

[45]  J. Bédard Trace element partitioning in plagioclase feldspar , 2006 .

[46]  J. Bédard Partitioning coefficients between olivine and silicate melts , 2005 .

[47]  S. Wilde,et al.  Nature and significance of the Early Cretaceous giant igneous event in eastern China , 2005 .

[48]  S. Wilde,et al.  Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited , 2005 .

[49]  J. Hermann Allanite: thorium and light rare earth element carrier in subducted crust , 2002 .

[50]  M. Tiepolo,et al.  Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients , 2002 .

[51]  R. Bodnar,et al.  Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon , 2002 .

[52]  W. Griffin,et al.  Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type , 2002 .

[53]  U. Kempe,et al.  Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits , 2002, Mineralogical Magazine.

[54]  F. Spear,et al.  Apatite, Monazite, and Xenotime in Metamorphic Rocks , 2002 .

[55]  P. Candela,et al.  Apatite in Igneous Systems , 2002 .

[56]  M. Fleet,et al.  Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors , 2002 .

[57]  John M. Hughes,et al.  The Crystal Structure of Apatite, Ca5(PO4)3(F,OH,Cl) , 2002 .

[58]  W. Griffin,et al.  Trace‐element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland , 2001 .

[59]  W. Griffin,et al.  Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle , 2000 .

[60]  B. Chappell,et al.  Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: an Integrated Approach , 2000 .

[61]  L. Sha,et al.  Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis , 1999 .

[62]  B. Harte,et al.  Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: Implications for wet melting of the lithospheric mantle , 1996 .

[63]  W. McDonough,et al.  The composition of the Earth , 1995 .

[64]  H. Fujimaki Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid , 1986 .

[65]  Joseph V. Smith,et al.  The role of apatite in mantle enrichment processes and in the petrogenesis of some alkali basalt suites , 1982 .

[66]  E. Watson,et al.  Apatite/liquid partition coefficients for the rare earth elements and strontium , 1981 .