Fractional-Order 2 × n RLC Circuit Network

This paper introduces new fundamentals of the 2 × n RLC circuit network in the fractional-order domain. First, we derive the three general formulae of the equivalent impedances of the circuit network by using the matrix transform methods and constructing the differential equation models in three different cases. Moreover, we systematically study the effects of the system parameters on the impedence characteristics in the three different cases. Specifically, the new phenomena and laws are presented by the results of the numerical simulations, which are impossible in the conventional cases. Finally, a comparative sensitivity analysis about the three cases with respect to the fractional orders for the fractional-order circuit network is carried out in detail. Mathematical analyses and numerical simulations are included to validate the study.

[1]  Ahmed S. Elwakil,et al.  On the practical realization of higher-order filters with fractional stepping , 2011, Signal Process..

[2]  M. Q. Owaidat,et al.  Network with Two Extra Interstitial Resistors , 2012 .

[3]  Ahmed S. Elwakil,et al.  On the Generalization of Second-Order Filters to the fractional-Order Domain , 2009, J. Circuits Syst. Comput..

[4]  Kazuhiro Saito,et al.  Simulation of Power-Law Relaxations by Analog Circuits : Fractal Distribution of Relaxation Times and Non-integer Exponents , 1993 .

[5]  J. Cserti Application of the lattice Green's function for calculating the resistance of an infinite network of resistors , 1999, cond-mat/9909120.

[6]  J. Khalifeh,et al.  PERTURBATION OF AN INFINITE NETWORK OF IDENTICAL CAPACITORS , 2007, 0905.0058.

[7]  Hongyan Jia,et al.  Topological horseshoe analysis and circuit realization for a fractional-order Lü system , 2013 .

[8]  Florian Dörfler,et al.  Kron Reduction of Graphs With Applications to Electrical Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Ahmed E. Kamal,et al.  1 + N network protection for mesh networks: network coding-based protection using p-cycles , 2010, TNET.

[10]  Karabi Biswas,et al.  Performance study of a ‘constant phase angle based’ impedance sensor to detect milk adulteration , 2011 .

[11]  Giulio Antonini,et al.  Ladder-Network-Based Model for Interconnects and Transmission Lines Time Delay and cutoff Frequency Determination , 2007, J. Circuits Syst. Comput..

[12]  G. Ablart,et al.  Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon , 2005 .

[13]  Emre Salman,et al.  Contact merging algorithm for efficient substrate noise analysis in large scale circuits , 2009, GLSVLSI '09.

[14]  Alan F. Murray,et al.  Integrated pulse stream neural networks: results, issues, and pointers , 1992, IEEE Trans. Neural Networks.

[15]  Karabi Biswas,et al.  Realization of a Constant Phase Element and Its Performance Study in a Differentiator Circuit , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Khaled N. Salama,et al.  Fractional-Order RC and RL Circuits , 2012, Circuits Syst. Signal Process..

[17]  Emre Salman,et al.  Methodology for Efficient Substrate Noise Analysis in Large-Scale Mixed-Signal Circuits , 2009, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  Jihad H. Asad,et al.  Analysis of infinite d-dimensional networks – Capacitance between two adjacent nodes , 2013 .

[19]  Ping Zhou,et al.  A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation , 2014, Commun. Nonlinear Sci. Numer. Simul..

[20]  Sidney Redner,et al.  A guide to first-passage processes , 2001 .

[21]  D. Sfyris,et al.  An exact analytical solution of the Reynolds equation for the finite journal bearing lubrication , 2012 .

[22]  Yintang Yang,et al.  High Speed Multi-Resource Arbiter with Active Virtual Channel Allocation for Network on Chips , 2010, J. Circuits Syst. Comput..

[23]  M. Q. Owaidat,et al.  Interstitial single resistor in a network of resistors application of the lattice Green's function , 2010 .

[24]  Young Jin Kim,et al.  Palladium Decorated Graphene-Nanoribbon Network for Enhanced Gas Sensing. , 2015, Journal of nanoscience and nanotechnology.

[25]  Silvia Bonfanti,et al.  The glassy state — Magnetically viewed from the frozen end , 2014 .

[26]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional L beta C alpha Circuit. , 2011 .

[27]  Khaled N. Salama,et al.  Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites , 2013 .

[28]  Hooshang Ghafouri-Shiraz,et al.  A proposal of short pulse generation using nonlinear LC ladder networks with amplifiers , 1997 .

[29]  Jihad H. Asad,et al.  Infinite Body Centered Cubic Network of Identical Resistors , 2014 .

[30]  Peng Chen,et al.  Analysis of the fractional-Order Parallel Tank Circuit , 2013, J. Circuits Syst. Comput..

[31]  B. S. Sreeja Low-power CMOS LC QVCO using zero-biased transistor coupling of MWCNT network-based VCO structure , 2014, Microelectron. J..

[32]  Monwhea Jeng Random walks and effective resistances on toroidal and cylindrical grids , 2000 .

[33]  S. Redner A guide to first-passage processes , 2001 .

[34]  S. Westerlund,et al.  Capacitor theory , 1994 .

[35]  J. T. Tenreiro Machado,et al.  Fractional order inductive phenomena based on the skin effect , 2012 .

[36]  Xikui Ma,et al.  Modeling and Analysis of the Fractional Order Buck Converter in DCM Operation by using Fractional Calculus and the Circuit-Averaging Technique , 2013 .

[37]  Christopher L. DeMarco,et al.  Network Essentiality , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  B. Goswami,et al.  Fabrication of a Fractional Order Capacitor With Desired Specifications: A Study on Process Identification and Characterization , 2011, IEEE Transactions on Electron Devices.

[39]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional ${\rm L}_{\beta} {\rm C}_{\alpha}$ Circuit , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  Erin P. J. Pearse,et al.  Resistance Boundaries of Infinite Networks , 2009, 0909.1518.