Degradable and Dissolvable Thin-Film Materials for the Applications of New-Generation Environmental-Friendly Electronic Devices

The environmental pollution generated by electronic waste (e-waste), waste-gas, and wastewater restricts the sustainable development of society. Environmental-friendly electronics made of degradable, resorbable, and compatible thin-film materials were utilized and explored, which was beneficial for e-waste dissolution and sustainable development. In this paper, we present a literature review about the development of various degradable and disposable thin-films for electronic applications. The corresponding preparation methods were simply reviewed and one of the most exciting and promising methods was discussed: Printing electronics technology. After a short introduction, detailed applications in the environment sensors and eco-friendly devices based on these degradable and compatible thin-films were mainly reviewed, finalizing with the main conclusions and promising perspectives. Furthermore, the future on these upcoming environmental-friendly electronic devices are proposed and prospected, especially on resistive switching devices, showing great potential applications in artificial intelligence (AI) and the Internet of Thing (IoT). These resistive switching devices combine the functions of storage and computations, which can complement the off-shelf computing based on the von Neumann architecture and advance the development of the AI.

[1]  Resistive Switching Characteristics and Failure Analysis of TiO2 Thin Film Deposited by RF Magnetron Sputtering System , 2011 .

[2]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[3]  I. Chen,et al.  Biodegradable resistive switching memory based on magnesium difluoride. , 2016, Nanoscale.

[4]  Byung-Soo Kim,et al.  Graphene‒Regulated Cardiomyogenic Differentiation Process of Mesenchymal Stem Cells by Enhancing the Expression of Extracellular Matrix Proteins and Cell Signaling Molecules , 2014, Advanced healthcare materials.

[5]  Liu Wang,et al.  Recent progress on biodegradable materials and transient electronics , 2017, Bioactive materials.

[6]  M. Aegerter,et al.  Spin deposition of MoSx thin films , 1999 .

[7]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[8]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[9]  R. Hennig,et al.  Computational identification of single-layer CdO for electronic and optical applications , 2013 .

[10]  Koo Woong Jeong,et al.  Resistive switching characteristics of unique binary-oxide MgOx films , 2006 .

[11]  M. Seul,et al.  Preparation of surfactant multilayer films on solid substrates by deposition from organic solution , 1990 .

[12]  Yoshiyuki Kawazoe,et al.  Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides , 2013 .

[13]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[14]  John A Rogers,et al.  Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide. , 2015, ACS applied materials & interfaces.

[15]  Sen Zhang,et al.  Bipolar loop-like non-volatile strain in the (001)-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals , 2014, Scientific Reports.

[16]  J. Bae,et al.  Effect of thickness-dependent structural defects on electrical stability of MoS2 thin film transistors , 2020 .

[17]  Zhenming Xu,et al.  Application of Life Cycle Assessment on Electronic Waste Management: A Review , 2017, Environmental Management.

[18]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[19]  Mei Yang,et al.  A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors. , 2018, Nanoscale.

[20]  M. Mas‐Torrent,et al.  Solution-processed thin films of a charge transfer complex for ambipolar field-effect transistors , 2019, Journal of Materials Chemistry C.

[21]  Yongli He,et al.  Coplanar Multigate MoS2 Electric-Double-Layer Transistors for Neuromorphic Visual Recognition. , 2018, ACS applied materials & interfaces.

[22]  A. Jäger-Waldau,et al.  Composition and morphology of MoSe2 thin films , 1990 .

[23]  Ruoyu Chen,et al.  Organic–inorganic hybrid hydrophobic Mg(OH)2−xFx–MTES coating with ultraviolet durability and high visible transmittance , 2019, Journal of Materials Science.

[24]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[25]  M. Teridi,et al.  Perylene derivatives for solar cells and energy harvesting: a review of materials, challenges and advances , 2019, Journal of Materials Science: Materials in Electronics.

[26]  Maurizio Prato,et al.  Biocompatibility and biodegradability of 2D materials: graphene and beyond. , 2019, Chemical communications.

[27]  Nearly free electron states in MXenes , 2016, 1604.07516.

[28]  Aize Hao,et al.  Transient Resistive Switching for Nonvolatile Memory Based on Water‐Soluble Cs4PbBr6 Perovskite Films , 2019, physica status solidi (RRL) – Rapid Research Letters.

[29]  T. Ma,et al.  High‐quality transparent conductive indium oxide films prepared by thermal evaporation , 1980 .

[30]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[31]  Sung-Jin Ahn,et al.  Controlling the Oxygen Electrocatalysis on Perovskite and Layered Oxide Thin Films for Solid Oxide Fuel Cell Cathodes , 2019, Applied Sciences.

[32]  A. L. Ivanovskii,et al.  Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability , 2012 .

[33]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[34]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[35]  M. Strumia,et al.  Chitosan films modified selectively on one side with dendritic molecules , 2012 .

[36]  Kaustav Banerjee,et al.  A Compact Current–Voltage Model for 2D Semiconductor Based Field-Effect Transistors Considering Interface Traps, Mobility Degradation, and Inefficient Doping Effect , 2014, IEEE Transactions on Electron Devices.

[37]  M. Prato,et al.  Direct visualization of carbon nanotube degradation in primary cells by photothermal imaging. , 2017, Nanoscale.

[38]  Matteo Ferroni,et al.  Nanostructured mixed oxides compounds for gas sensing applications , 2002 .

[39]  Rebecca K. Kramer,et al.  All‐Printed Flexible and Stretchable Electronics , 2017, Advanced materials.

[40]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[41]  Y. Hao,et al.  Physically Transient Resistive Switching Memory Based on Silk Protein. , 2016, Small.

[42]  T. Matsuura,et al.  Thin Film Composite and/or Thin Film Nanocomposite Hollow Fiber Membrane for Water Treatment, Pervaporation, and Gas/Vapor Separation , 2018, Polymers.

[43]  Vamsi K Yadavalli,et al.  Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors. , 2016, Biosensors & bioelectronics.

[44]  S. Kar‐Narayan,et al.  Caloric Effects in Perovskite Oxides , 2019, Advanced Materials Interfaces.

[45]  Impact of Device Area and Film Thickness on Performance of Sol-Gel Processed ZrO2 RRAM , 2018, IEEE Electron Device Letters.

[46]  Sirilak Sattayasamitsathit,et al.  Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. , 2014, ACS nano.

[47]  R. Ismail,et al.  Two-dimensional (2D) transition metal dichalcogenide semiconductor field-effect transistors: the interface trap density extraction and compact model , 2015 .

[48]  S. Chuang,et al.  La0.6Sr0.4Co0.2Fe0.8O3 Perovskite: A Stable Anode Catalyst for Direct Methane Solid Oxide Fuel Cells , 2014 .

[49]  S. Matsuoka,et al.  Uniaxially oriented polycrystalline thin films and air-stable n-type transistors based on donor-acceptor semiconductor (diC8BTBT)(FnTCNQ) [n = 0, 2, 4] , 2015 .

[50]  Xiaochen Dong,et al.  Binary metal oxide: advanced energy storage materials in supercapacitors , 2015 .

[51]  Yoon Kyeung Lee,et al.  Advanced Materials and Devices for Bioresorbable Electronics. , 2018, Accounts of chemical research.

[52]  Miao Zhou,et al.  Flexible All-Inorganic Perovskite CsPbBr3 Nonvolatile Memory Device. , 2017, ACS applied materials & interfaces.

[53]  G. Shi,et al.  High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite. , 2017, Physical chemistry chemical physics : PCCP.

[54]  H. Sirringhaus,et al.  Alternative Type Two-Dimensional-Three-Dimensional Lead Halide Perovskite with Inorganic Sodium Ions as a Spacer for High-Performance Light-Emitting Diodes. , 2019, ACS nano.

[55]  L. Paulatto,et al.  Phonon hydrodynamics in two-dimensional materials , 2015, Nature Communications.

[56]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[57]  Xinlong Wang,et al.  Preparing the Degradable, Flame-Retardant and Low Dielectric Constant Nanocomposites for Flexible and Miniaturized Electronics with Poly(lactic acid), Nano ZIF-8@GO and Resorcinol Di(phenyl phosphate) , 2018, Materials.

[58]  R. Wallace,et al.  Atomically-thin layered films for device applications based upon 2D TMDC materials , 2016 .

[59]  Y. Hao,et al.  Solution-Processed Physically Transient Resistive Memory Based on Magnesium Oxide , 2019, IEEE Electron Device Letters.

[60]  P. D. Fleischauer Fundamental aspects of the electronic structure, materials properties and lubrication performance of sputtered MoS2 films , 1987 .

[61]  Wei Yang,et al.  Flexible Anti-biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar Driven Water Purification. , 2019, ACS applied materials & interfaces.

[62]  F. Zhuge,et al.  Memristors based on amorphous ZnSnO films , 2019, Materials Letters.

[63]  A. Tuantranont,et al.  Ion-assisted e-beam evaporated gas sensor for environmental monitoring , 2005 .

[64]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[65]  V. Mathe,et al.  A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications , 2018, Sensors and Actuators B: Chemical.

[66]  P. Fei,et al.  Preparation and characterization of antibacterial polyamine-based cyclophosphazene nanofiltration membranes , 2019, Journal of Membrane Science.

[67]  Daqin Chen,et al.  Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications , 2019, Journal of Materials Chemistry C.

[68]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[69]  H. A. Klasens,et al.  A tin oxide field-effect transistor , 1964 .

[70]  Zhenan Bao,et al.  Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method , 2014, Nature Communications.

[71]  Guoxiu Wang,et al.  MXene‐Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors , 2019, Advanced Materials Interfaces.

[72]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[73]  Shuxiang Wu,et al.  Photoresponse of nonvolatile resistive memory device based on all-inorganic perovskite CsPbBr3 nanocrystals , 2019, Journal of Physics D: Applied Physics.

[74]  Jang-Sik Lee,et al.  Biocompatible and Flexible Chitosan‐Based Resistive Switching Memory with Magnesium Electrodes , 2015 .

[75]  Hasan Sahin,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[76]  Lan Yin,et al.  Materials and Devices for Biodegradable and Soft Biomedical Electronics , 2018, Materials.

[77]  Zhaona Wang,et al.  Dissolvable and Recyclable Random Lasers , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[78]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[79]  A. L. Ivanovskii,et al.  Graphene-like transition-metal nanocarbides and nanonitrides , 2013 .

[80]  P. Goh,et al.  Thin Film Composite Membrane for Oily Waste Water Treatment: Recent Advances and Challenges , 2018, Membranes.

[81]  R. Hurt,et al.  Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media. , 2016, Environmental science & technology.

[82]  Gang Cao,et al.  Quantum dot behavior in transition metal dichalcogenides nanostructures , 2016 .

[83]  Y. Duan,et al.  Functional Metal Oxides in Perovskite Solar Cells. , 2019, Chemphyschem : a European journal of chemical physics and physical chemistry.

[84]  Mihai Irimia-Vladu,et al.  "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future. , 2014, Chemical Society reviews.

[85]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[86]  Dongyun Chen,et al.  Environmentally Robust Memristor Enabled by Lead-Free Double Perovskite for High-Performance Information Storage. , 2019, Small.

[87]  Zhenan Bao,et al.  Thin Film Deposition, Patterning, and Printing in Organic Thin Film Transistors , 2004 .

[88]  S. Husson,et al.  Alpha spectroscopy substrates based on thin polymer films , 2016, Journal of Radioanalytical and Nuclear Chemistry.

[89]  R. Hennig,et al.  Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. , 2016, Physical review letters.

[90]  John A Rogers,et al.  Silicon electronics on silk as a path to bioresorbable, implantable devices. , 2009, Applied physics letters.

[91]  M. Ok,et al.  Instrument-Free and Autonomous Generation of H2O2 from Mg–ZnO/Au Hybrids for Disinfection and Organic Pollutant Degradations , 2018, Metals and Materials International.

[92]  M. Jayachandran,et al.  Pulsed electrodeposition and characterization of molybdenum diselenide thin film , 2005 .

[93]  Bengt Fadeel,et al.  Biological interactions of carbon-based nanomaterials: From coronation to degradation. , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[94]  Cuiling Zhang,et al.  C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency. , 2017, Nanoscale.

[95]  J. Klein-Seetharaman,et al.  The enzymatic oxidation of graphene oxide. , 2011, ACS nano.

[96]  P. Zhou,et al.  Flexible Transparent Organic Artificial Synapse Based on the Tungsten/Egg Albumen/Indium Tin Oxide/Polyethylene Terephthalate Memristor. , 2019, ACS applied materials & interfaces.

[97]  Dandan Sun,et al.  Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations , 2014 .

[98]  John A. Rogers,et al.  Biodegradable Thin Metal Foils and Spin‐On Glass Materials for Transient Electronics , 2015 .

[99]  Francesco Guido,et al.  Biocompatible, Flexible, and Compliant Energy Harvesters Based on Piezoelectric Thin Films , 2018, IEEE Transactions on Nanotechnology.

[100]  Yonggang Huang,et al.  Dissolvable Metals for Transient Electronics , 2014 .

[101]  M. Hersam,et al.  2D materials for quantum information science , 2019, Nature Reviews Materials.

[102]  David Jimenez,et al.  Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors , 2012 .

[103]  Huanyu Cheng,et al.  Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics , 2014 .

[104]  Chi Zhang,et al.  An alginate film-based degradable triboelectric nanogenerator , 2018, RSC advances.

[105]  Yury Gogotsi,et al.  First principles study of two-dimensional early transition metal carbides , 2012 .

[106]  F. Aziz,et al.  Stability of organometal halide perovskite solar cells and role of HTMs: recent developments and future directions , 2018, RSC advances.

[107]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[108]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[109]  Y. Hao,et al.  ZnO-Based Physically Transient and Bioresorbable Memory on Silk Protein , 2018, IEEE Electron Device Letters.

[110]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[111]  S. Bhansali,et al.  Recent advances in ZnO nanostructures and thin films for biosensor applications: review. , 2012, Analytica chimica acta.

[112]  CMOS Compatible Transient Resistive Memory with Prolonged Lifetime , 2019, Advanced Materials Technologies.

[113]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[114]  Y. Hao,et al.  Physically Transient Memristive Synapse With Short-Term Plasticity Based on Magnesium Oxide , 2019, IEEE Electron Device Letters.

[115]  Yonggang Huang,et al.  Transient, biocompatible electronics and energy harvesters based on ZnO. , 2013, Small.

[116]  P. Boochathum,et al.  Biocompatibility and biodegradability of filler encapsulated chloroacetated natural rubber/polyvinyl alcohol nanofiber for wound dressing. , 2019, Materials science & engineering. C, Materials for biological applications.

[117]  Su‐Ting Han,et al.  Biodegradable skin-inspired nonvolatile resistive switching memory based on gold nanoparticles embedded alkali lignin , 2018, Organic Electronics.

[118]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[119]  L. Chua Memristor-The missing circuit element , 1971 .

[120]  Li Qiang Zhu,et al.  Biodegradable oxide synaptic transistors gated by a biopolymer electrolyte , 2016 .

[121]  M. Willinger,et al.  A Large-Area Transferable Wide Band Gap 2D Silicon Dioxide Layer. , 2016, ACS nano.

[122]  Haifeng Cheng,et al.  Synaptic-functional and fully water-soluble transient memristor made from materials compatible with semiconductor technology , 2019, Japanese Journal of Applied Physics.

[123]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[124]  Z. Bao,et al.  Organic Thin‐Film Transistors Fabricated on Resorbable Biomaterial Substrates , 2010, Advanced materials.

[125]  A. Qurashi,et al.  ZnO nanostructures based biosensors for cancer and infectious disease applications: Perspectives, prospects and promises , 2017 .

[126]  Chang Yong Kang,et al.  Material and electrical analysis of hafnium titania bilayer dielectric metal-oxide-semiconductor field-effect transistors , 2005 .

[127]  Shengbai Zhang,et al.  Monolayer II-VI semiconductors: A first-principles prediction , 2015 .

[128]  Jang‐Sik Lee,et al.  Foldable and Biodegradable Energy‐Storage Devices on Copy Papers , 2018, Advanced Electronic Materials.

[129]  Hyunsang Hwang,et al.  Effect of Scaling $\hbox{WO}_{x}$-Based RRAMs on Their Resistive Switching Characteristics , 2011, IEEE Electron Device Letters.

[130]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[131]  Sang Yeol Lee Improvement on the Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Amorphous Oxide Multilayer Source/Drain Electrodes , 2016 .

[132]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[133]  Hongli Zhu,et al.  Two-dimensional MXenes for energy storage , 2018 .

[134]  S. B. Rudraswamy,et al.  Optimization of RF Sputtered Ag-Doped BaTiO3-CuO Mixed Oxide Thin Film as Carbon Dioxide Sensor for Environmental Pollution Monitoring Application , 2016, IEEE Sensors Journal.

[135]  Xian Huang,et al.  High‐Performance Biodegradable/Transient Electronics on Biodegradable Polymers , 2014, Advanced materials.

[136]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[137]  Thomas Frauenheim,et al.  New Family of Quantum Spin Hall Insulators in Two-dimensional Transition-Metal Halide with Large Nontrivial Band Gaps. , 2015, Nano letters.

[138]  Giovanni Neri,et al.  CO sensing characteristics of In-doped ZnO semiconductor nanoparticles , 2017 .

[139]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[140]  Han Wang,et al.  Molecular-Beam Epitaxy of Two-Dimensional In2Se3 and Its Giant Electroresistance Switching in Ferroresistive Memory Junction. , 2018, Nano letters.

[141]  Jae-Woong Jeong,et al.  Materials and Fabrication Processes for Transient and Bioresorbable High‐Performance Electronics , 2013 .

[142]  Haifeng Cheng,et al.  Physically transient memristor based on the permeation of water at the interface of electrode and substrate , 2019, Journal of Alloys and Compounds.

[143]  A. Zenkevich,et al.  Multilevel resistive switching in ternary HfxAl1-xOy oxide with graded Al depth profile , 2013 .

[144]  Frederick T. Chen,et al.  Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications , 2008 .

[145]  S. Joo,et al.  A calcium doped binary strontium-copper oxide electrode material for high-performance supercapacitors , 2019, Materials Science in Semiconductor Processing.

[146]  Julong He,et al.  MXene: a new family of promising hydrogen storage medium. , 2013, The journal of physical chemistry. A.

[147]  Paul Muralt,et al.  Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting , 2009 .

[148]  S J L Billinge,et al.  Synthesis and characterization of two-dimensional Nb4C3 (MXene). , 2014, Chemical communications.

[149]  S. A. Hasan,et al.  A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. , 2012, Accounts of chemical research.

[150]  Chongwu Zhou,et al.  Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. , 2010, ACS nano.

[151]  Eric Borguet,et al.  TiO(2)/LiCl-based nanostructured thin film for humidity sensor applications. , 2011, ACS applied materials & interfaces.

[152]  Huanyu Cheng,et al.  Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. , 2015, Nano letters.

[153]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[154]  K. Suganuma,et al.  Laser-induced forward transfer of high-viscosity silver precursor ink for non-contact printed electronics , 2015 .

[155]  N. Soin,et al.  Grape extract assisted green synthesis of reduced graphene oxide for water treatment application , 2015 .

[156]  Madan Dubey,et al.  Two-dimensional material nanophotonics , 2014, 1410.3882.

[157]  Biodegradable and Flexible Resistive Memory for Transient Electronics , 2018, The Journal of Physical Chemistry C.

[158]  P. Valvin,et al.  Hexagonal boron nitride is an indirect bandgap semiconductor , 2015, Nature Photonics.

[159]  T. Berzina,et al.  Electrochemical control of the conductivity in an organic memristor: a time-resolved X-ray fluorescence study of ionic drift as a function of the applied voltage. , 2009, ACS applied materials & interfaces.

[160]  Heng Pan,et al.  Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review , 2018, Advanced materials.

[161]  M. Camacho-López,et al.  Preparation and characterization of organic nanoparticles by laser ablation in liquids technique and their biological activity , 2019, Materials Research Express.

[162]  Chang Kyu Jeong,et al.  Modulation of surface physics and chemistry in triboelectric energy harvesting technologies , 2019, Science and technology of advanced materials.

[163]  S. K. Gupta,et al.  Development of gas sensors using ZnO nanostructures , 2010 .

[164]  N. Xu,et al.  Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories , 2008 .

[165]  Yang Zou,et al.  Biodegradable triboelectric nanogenerator as a life-time designed implantable power source , 2016, Science Advances.

[166]  M. A. Mutalib,et al.  Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst. , 2015, Carbohydrate polymers.

[167]  Monica Katiyar,et al.  Inkjet Printed Organic Thin Film Transistors: Achievements and Challenges , 2012 .

[169]  S. Lebègue,et al.  First-principles investigation of two-dimensional trichalcogenide and sesquichalcogenide monolayers , 2016 .

[170]  N. K. Perkgoz,et al.  Nanotechnological advances in catalytic thin films for green large-area surfaces , 2015 .

[171]  N. Kotov,et al.  Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing , 2007 .

[172]  S. Ogale,et al.  Pulsed laser-deposited MoS₂ thin films on W and Si: field emission and photoresponse studies. , 2014, ACS applied materials & interfaces.

[173]  Jingquan Liu,et al.  Low-Voltage Transient/Biodegradable Transistors Based on Free-Standing Sodium Alginate Membranes , 2015, IEEE Electron Device Letters.

[174]  Shuai Zhong,et al.  Enabling Transient Electronics with Degradation on Demand via Light-Responsive Encapsulation of a Hydrogel-Oxide Bilayer. , 2018, ACS applied materials & interfaces.

[175]  Fang Xu,et al.  Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films , 2018, Journal of Materials Science.

[176]  M. F. Al-Kuhaili,et al.  Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O) , 2008 .

[177]  Self-consistent theory of polymerized membranes. , 1992, Physical review letters.

[178]  Liangbing Hu,et al.  Transient Electronics: Materials and Devices , 2016 .

[179]  Miao Zhou,et al.  Transient Resistive Switching Memory of CsPbBr3 Thin Films , 2018 .

[180]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[181]  Yury Gogotsi,et al.  New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[182]  C. Ballif,et al.  Structural, chemical, and electrical characterisation of reactively sputtered WSx thin films , 1996 .

[183]  Zhenan Bao,et al.  Biodegradable Polymeric Materials in Degradable Electronic Devices , 2018, ACS central science.

[184]  Huanyu Cheng,et al.  25th Anniversary Article: Materials for High‐Performance Biodegradable Semiconductor Devices , 2014, Advanced materials.

[185]  M. Shur,et al.  Selective Gas Sensing With $h$ -BN Capped MoS2 Heterostructure Thin-Film Transistors , 2015, IEEE Electron Device Letters.

[186]  D. Bao,et al.  Transition metal oxide thin films for nonvolatile resistive random access memory applications , 2009 .

[187]  R. Fair,et al.  Chip Scale Optical Microresonator Sensors Integrated With Embedded Thin Film Photodetectors on Electrowetting Digital Microfluidics Platforms , 2012, IEEE Sensors Journal.

[188]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[189]  W. E. Beadle,et al.  Switching properties of thin Nio films , 1964 .

[190]  Zhen Zhou,et al.  MXene-based materials for electrochemical energy storage , 2018 .

[191]  Xianluo Hu,et al.  Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[192]  P. P. Hankare,et al.  MoS2: Preparation and their characterization , 2009 .

[193]  Chenglong Li,et al.  Construction of Efficient Deep-Red/Near-Infrared Emitter Based on a Large π-Conjugated Acceptor and Delayed Fluorescence OLEDs with External Quantum Efficiency of over 20% , 2019, The Journal of Physical Chemistry C.

[194]  Yury Gogotsi,et al.  Chemical vapour deposition: Transition metal carbides go 2D. , 2015, Nature materials.

[195]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[196]  Torahiko Ando,et al.  Field-effect transistor with polythiophene thin film , 1987 .