Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film A-si:h Solar Cells

Nanophotonic structures have attracted attention for light trapping in solar cells with the potential to manage and direct light absorption on the nanoscale. While both randomly textured and nanophotonic structures have been investigated, the relationship between photocurrent and the spatial correlations of random or designed surfaces has been unclear. Here we systematically design pseudorandom arrays of nanostructures based on their power spectral density, and correlate the spatial frequencies with measured and simulated photocurrent. The integrated cell design consists of a patterned plasmonic back reflector and a nanostructured semiconductor top interface, which gives broadband and isotropic photocurrent enhancement.

[1]  R. Zamboni,et al.  SCALING BEHAVIOR OF ANISOTROPIC ORGANIC THIN FILMS GROWN IN HIGH VACUUM , 1997 .

[2]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[3]  J. Rogers,et al.  Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement. , 2010, Nano letters.

[4]  Yong Chen,et al.  Roll in and roll out: a path to high-throughput nanoimprint lithography. , 2009, ACS nano.

[5]  R. Biswas,et al.  Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector , 2010 .

[6]  C. Battaglia,et al.  Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting , 2010 .

[7]  J. Owens,et al.  Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells , 2009 .

[8]  Marc A. Verschuuren,et al.  3D Photonic Structures by Sol-Gel Imprint Lithography , 2007 .

[9]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[10]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[11]  M. Kondo,et al.  Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties , 2010 .

[12]  Michael J. Burns,et al.  Efficient nanocoax‐based solar cells , 2010 .

[13]  M. Green,et al.  The limiting efficiency of silicon solar cells under concentrated sunlight , 1986, IEEE Transactions on Electron Devices.

[14]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[15]  C. Ballif,et al.  Erratum: “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers” [J. Appl. Phys. 106, 044502 (2009)] , 2012 .

[16]  M. Stutzmann,et al.  Periodic light coupler gratings in amorphous thin film solar cells , 2001 .

[17]  Christophe Ballif,et al.  UV‐nano‐imprint lithography technique for the replication of back reflectors for n‐i‐p thin film silicon solar cells , 2011 .

[18]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[19]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[20]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[21]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[22]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[23]  Shrestha Basu Mallick,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells , 2010, Photonics Europe.

[24]  F. Lederer,et al.  Comparison and optimization of randomly textured surfaces in thin-film solar cells. , 2010, Optics express.

[25]  C. Ballif,et al.  Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers , 2009 .

[26]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[27]  Helmut Stiebig,et al.  Thin-film silicon solar cells with efficient periodic light trapping texture , 2007 .

[28]  R. Schropp,et al.  Understanding light trapping by light scattering textured back electrodes in thin film n‐i‐p-type silicon solar cells , 2007 .

[29]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[30]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[31]  Miro Zeman,et al.  Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells , 2008 .