The transport of U-and Th-series nuclides in sandy confined aquifers

[1]  B. Bourdon,et al.  Erosion timescales derived from U-decay series measurements in rivers , 2001 .

[2]  Yemane Asmerom,et al.  Late Holocene Climate and Cultural Changes in the Southwestern United States , 2001, Science.

[3]  V. Polyak,et al.  Wetter and cooler late Holocene climate in the southwestern United States from mites preserved in stalagmites , 2001 .

[4]  G. Wasserburg,et al.  The transport of U- and Th-series nuclides in sandy confined aquifers , 2001 .

[5]  M. Stute,et al.  Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies , 2000 .

[6]  G. Wasserburg,et al.  Factors controlling the groundwater transport of U, Th, Ra, and Rn , 2000 .

[7]  B. Dupré,et al.  Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers , 1999 .

[8]  Andrew C. Morton,et al.  Processes controlling the composition of heavy mineral assemblages in sandstones , 1999 .

[9]  G. Wasserburg,et al.  The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea , 1997 .

[10]  D. Langmuir Aqueous Environmental Geochemistry , 1997 .

[11]  W. Broecker,et al.  A 30,000 yr Continental Paleotemperature Record Derived from Noble Gases Dissolved in Groundwater from the San Juan Basin, New Mexico , 1995, Quaternary Research.

[12]  W. Burnett,et al.  The Distribution of Uranium and Thorium Decay-Series Radionuclides in the Environment—A Review , 1994 .

[13]  D. Schink,et al.  A method for rapid in situ extraction and laboratory determination of Th, Pb, and Ra isotopes from large volumes of seawater , 1993 .

[14]  K. Turekian,et al.  Retardation of 238U and 232Th decay chain radionuclides in Long Island and Connecticut aquifers , 1993 .

[15]  D. Hammond,et al.  Decay-series disequilibria applied to the study of rock-water interaction and geothermal systems.; 2 , 1992 .

[16]  G. Wasserburg,et al.  234U—238U—230Th—232Th systematics in saline groundwaters from central Missouri , 1990 .

[17]  Thomas M. Semkow,et al.  The role of radium distribution and porosity in radon emanation from solids. , 1990 .

[18]  T. Semkow Recoil-emanation theory applied to radon release from mineral grains , 1990 .

[19]  A. Long,et al.  An isotopic investigation of groundwater in the Central San Juan Basin, New Mexico: Carbon 14 dating as a basis for numerical flow modeling , 1989 .

[20]  J. Andrews,et al.  Natural radioelement solution by circulating groundwaters in the Stripa granite , 1989 .

[21]  J. Hem Study and Interpretation of the Chemical Characteristics of Natural Water , 1989 .

[22]  M. Hoffmann,et al.  Reductive dissolution of fe(III) oxides by Pseudomonas sp. 200 , 1988, Biotechnology and bioengineering.

[23]  S. Krishnaswami,et al.  Comparative study of 222Rn, 40Ar, 39Ar and 37Ar leakage from rocks and minerals: Implications for the role of nanopores in gas transport through natural silicates , 1988 .

[24]  L. E. Fox,et al.  The solubility of colloidal ferric hydroxide and its relevance to iron concentrations in river water , 1988 .

[25]  K. Fröhlich,et al.  On the potential use of uranium isotopes for groundwater dating , 1987 .

[26]  G. Wasserburg,et al.  238 U, 234 U and 232 Th in seawater , 1986 .

[27]  F. Phillips,et al.  Paleoclimatic Inferences from an Isotopic Investigation of Groundwater in the Central San Juan Basin, New Mexico , 1986, Quaternary Research.

[28]  D. Lal,et al.  Preferential solution of234U from recoil tracks and234U/238U radioactive disequilibrium in natural waters , 1986 .

[29]  M. Davidson,et al.  Interpretation of 234U/238U activity ratios in groundwaters , 1985 .

[30]  Rama,et al.  Mechanism of transport of U-Th series radioisotopes from solids into ground water , 1984 .

[31]  W. C. Graustein,et al.  Radium, thorium and radioactive lead isotopes in groundwaters: application to the in situ determination of adsorption-desorption rate constants and retardation factors , 1982 .

[32]  R. Fleischer Alpha-recoil damage and solution effects in minerals: uranium isotopic disequilibrium and radon release , 1982 .

[33]  P. Brewer,et al.  Elevated Concentrations of Actinides in Mono Lake , 1982, Science.

[34]  J. Herman,et al.  The mobility of thorium in natural waters at low temperatures , 1980 .

[35]  D. Schink,et al.  Radium, thorium, and actinium extraction from seawater using an improved manganese-oxide-coated fiber , 1979 .

[36]  D. Langmuir,et al.  Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits , 1978 .

[37]  K. Kigoshi Alpha-Recoil Thorium-234: Dissolution into Water and the Uranium-234/Uranium-238 Disequilibrium in Nature , 1971, Science.

[38]  M. Land Weathering of till in northern Sweden and its implications for the geochemistry of soil water, groundwater and stream water , 1998 .

[39]  P. Domenico,et al.  Physical and chemical hydrogeology , 1990 .

[40]  M. Davidson,et al.  A Porous Flow Model for Steady State Transport of Radium in Groundwater , 1986 .

[41]  J. Laul,et al.  The Use of Natural Radionuclides to Predict the Behavior of Radwaste Radionuclides In Far-Field Aquifers , 1983 .

[42]  J. Andrews,et al.  234U/238U activity ratios of dissolved uranium in groundwaters from a jurassic limestone aquifer in England , 1982 .

[43]  F. Mackenzie,et al.  Evolution of sedimentary rocks , 1971 .

[44]  N. J. Lusczynski,et al.  Hydrology of Brookhaven National Laboratory and vicinity, Suffolk County, New York , 1968 .