Average Cost Optimality in Inventory Models with Markovian Demands: A Summary
暂无分享,去创建一个
This paper is concerned with long-run average cost minimization of a stochastic inventory problem with Markovian demand, fixed ordering cost, and convex surplus cost. The states of the Markov chain represent different possible states of the environment. Using a vanishing discount approach, a dynamic programming equation and the corresponding verification theorem are established. Finally, the existence of an optimal state-dependent (s, S) policy is proved.
[1] Jing-Sheng Song,et al. Inventory Control in a Fluctuating Demand Environment , 1993, Oper. Res..
[2] Yu-Sheng Zheng. A SIMPLE PROOF FOR OPTIMALITY OF (s, S) POLICIES , 1991 .
[3] S. Sethi,et al. Average Cost Optimality in Inventory Models with Markovian Demands , 1997 .