Average Cost Optimality in Inventory Models with Markovian Demands: A Summary

This paper is concerned with long-run average cost minimization of a stochastic inventory problem with Markovian demand, fixed ordering cost, and convex surplus cost. The states of the Markov chain represent different possible states of the environment. Using a vanishing discount approach, a dynamic programming equation and the corresponding verification theorem are established. Finally, the existence of an optimal state-dependent (s, S) policy is proved.