4×4-bit array two phase clocked adiabatic static CMOS logic multiplier with new XOR

This paper presents the simulation results of a 4×4-bit array two phase clocked adiabatic static CMOS logic (2PASCL) multiplier using 0.18 µm standard CMOS technology. We also propose a new design of 2PASCL XOR which reduces the number of transistors as well as the power consumption. Analytical method to compare the lower current flow in adiabatic circuit is also presented. At transition frequencies of 1 to 100 MHz, 4×4-bit array 2PASCL multiplier shows a maximum of 55% reduction in power dissipation to that of a static CMOS. The results indicate that 2PASCL technology can be advantageously applied to low power digital devices operated at low frequencies, such as radio-frequency identifications (RFIDs), smart cards, and sensors.

[1]  Kai-Wen Yao,et al.  Analysis and Design of an Efficient Irreversible Energy Recovery Logic in 0.18-$\mu$m CMOS , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Wu-Shiung Feng,et al.  New efficient designs for XOR and XNOR functions on the transistor level , 1994, IEEE J. Solid State Circuits.

[3]  Yasuhiro Takahashi,et al.  4-bit ripple carry adder of two-phase clocked adiabatic static CMOS logic: A comparison with static CMOS , 2009, 2009 European Conference on Circuit Theory and Design.

[4]  Nestoras Tzartzanis,et al.  Low-power digital systems based on adiabatic-switching principles , 1994, IEEE Trans. Very Large Scale Integr. Syst..

[5]  Yasuhiro Takahashi,et al.  Fundamental logics based on two phase clocked adiabatic static CMOS logic , 2009, 2009 16th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2009).

[6]  Michio Yokoyama,et al.  2PADCL: Two Phase drive Adiabatic Dynamic CMOS Logic , 2006, APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems.

[7]  M. Nalasani,et al.  Reversible logic , 2005, IEEE Potentials.

[8]  Markku Åberg,et al.  A Single Clocked Adiabatic Static Logic—A Proposal for Digital Low Power Applications , 2001, J. VLSI Signal Process..

[9]  John Stewart Denker,et al.  Adiabatic dynamic logic , 1995 .

[10]  Kaushik Roy,et al.  QSERL: quasi-static energy recovery logic , 2001 .

[11]  K. T. Lau,et al.  Improved adiabatic pseudo-domino logic family , 1997 .

[12]  Mitsuru Mizunuma,et al.  Adiabatic dynamic CMOS logic circuit , 2000 .

[13]  Yasuhiro Takahashi,et al.  Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family , 2010 .

[14]  Deog-Kyoon Jeong,et al.  An efficient charge recovery logic circuit , 1996, IEEE J. Solid State Circuits.

[15]  Yasuhiro Takahashi,et al.  4-bit ripple carry adder using two phase clocked adiabatic static CMOS logic , 2009, TENCON 2009 - 2009 IEEE Region 10 Conference.

[16]  A. Kramer,et al.  Adiabatic Computing with the 2n-2n2d Logic Family , 1994, Proceedings of 1994 IEEE Symposium on VLSI Circuits.

[17]  Sven Mattisson,et al.  Hot Clock nMOS , 1985 .

[18]  Yasuhiro Takahashi,et al.  Two phase clocked adiabatic static CMOS logic , 2009, 2009 International Symposium on System-on-Chip.

[19]  V. I. Starosel'skii Adiabatic Logic Circuits: A Review , 2001 .

[20]  Nazrul Anuar,et al.  XOR evaluation for 4×4-bit array two-phase clocked adiabatic static CMOS logic multiplier , 2010, 2010 53rd IEEE International Midwest Symposium on Circuits and Systems.

[21]  K. A. Valiev,et al.  A model and properties of a thermodynamically reversible logic gate , 2000 .

[22]  Suhwan Kim,et al.  Charge-recovery computing on silicon , 2005, IEEE Transactions on Computers.