Physiologically Oriented Models of the Hemodynamic Response in Functional MRI

Today, most studies of cognitive processes using functional MRI (fMRI) experiments adopt highly flexible stimulation designs, where not only the activation amount but also the time course of the measured hemodynamic response is of interest. The measured signal only indirectly reflects the underlying neuronal activation, and is understood as being convolved with a hemodynamic modulation function. An approach to better allow inferences about the neuronal activation is given by modeling this convolution process. In this study, we investigate this approach and discuss computational models for the hemodynamic response. An analysis of a recent fMRI experiment underlines the usefulness of this approach.

[1]  A. Neumaier,et al.  Multivariate Autoregressive and Ornstein-Uhlenbeck Processes: Estimates for Order, Parameters, Spect , 1997 .

[2]  Karl J. Friston,et al.  Nonlinear event‐related responses in fMRI , 1998, Magnetic resonance in medicine.

[3]  A. Rescigno,et al.  Mathematical Methods in The Formulation of Pharmacokinetic Models , 1983 .

[4]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[5]  Mark S. Cohen,et al.  Parametric Analysis of fMRI Data Using Linear Systems Methods , 1997, NeuroImage.

[6]  Irène Buvat,et al.  Space-Time Statistical Model for Functional MRI Image Sequences , 1997, IPMI.

[7]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[8]  C. Cox,et al.  Asymptotic confidence bands for generalized nonlinear regression models. , 1995, Biometrics.

[9]  J. Rajapakse,et al.  Human Brain Mapping 6:283–300(1998) � Modeling Hemodynamic Response for Analysis of Functional MRI Time-Series , 2022 .

[10]  F. Kruggel,et al.  Preprocessing of fMR datasets , 1998, Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162).

[11]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[12]  Scott L. Zeger,et al.  Non‐linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging , 1997 .

[13]  A Villringer,et al.  Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. , 1995, Cerebrovascular and brain metabolism reviews.

[14]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[15]  B. Rosen,et al.  Functional mapping of the human visual cortex by magnetic resonance imaging. , 1991, Science.

[16]  D. Schacter,et al.  Functional–Anatomic Study of Episodic Retrieval Using fMRI I. Retrieval Effort versus Retrieval Success , 1998, NeuroImage.

[17]  F Kruggel,et al.  Modeling the hemodynamic response in single‐trial functional MRI experiments , 1999, Magnetic resonance in medicine.

[18]  H. O. Hartley,et al.  Exact confidence regions for the parameters in non-linear regression laws , 1964 .

[19]  W Richter,et al.  Limitations of temporal resolution in functional MRI , 1997, Magnetic resonance in medicine.

[20]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[21]  A. Dale,et al.  Functional–Anatomic Study of Episodic Retrieval II. Selective Averaging of Event-Related fMRI Trials to Test the Retrieval Success Hypothesis , 1998, NeuroImage.

[22]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[23]  Karl J. Friston,et al.  Assessing the significance of focal activations using their spatial extent , 1994, Human brain mapping.

[24]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.