Optimal Experimental Design for Constrained Inverse Problems
暂无分享,去创建一个
[1] Lior Horesh,et al. Optimal estimation of L1 regularization prior from a regularized empirical bayesian risk standpoint , 2012 .
[2] Xun Huan,et al. Simulation-based optimal Bayesian experimental design for nonlinear systems , 2011, J. Comput. Phys..
[3] Daniela Calvetti,et al. Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .
[4] P. Hansen. Discrete Inverse Problems: Insight and Algorithms , 2010 .
[5] J. D. Jakeman,et al. A Consistent Bayesian Formulation for Stochastic Inverse Problems Based on Push-forward Measures , 2017, 1704.00680.
[6] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[7] Luis Tenorio,et al. Stochastic Newton and Quasi-Newton Methods for Large Linear Least-squares Problems , 2017, ArXiv.
[8] Anthony C. Atkinson,et al. Optimum Experimental Designs , 1992 .
[9] David Isaacson,et al. Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.
[10] Avinash C. Kak,et al. Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.
[11] John D. Jakeman,et al. Optimal Experimental Design Using A Consistent Bayesian Approach , 2017, 1705.09395.
[12] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[13] Stephen J. Wright,et al. Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .
[14] Georg Stadler,et al. A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized ℓ0-Sparsification , 2013, SIAM J. Sci. Comput..
[15] S. Arridge. Optical tomography in medical imaging , 1999 .
[16] Luis Tenorio,et al. Numerical methods for A-optimal designs with a sparsity constraint for ill-posed inverse problems , 2012, Comput. Optim. Appl..
[17] E. Haber,et al. Numerical methods for experimental design of large-scale linear ill-posed inverse problems , 2008 .
[18] A. Rukhin. Bayes and Empirical Bayes Methods for Data Analysis , 1997 .
[19] Eran Treister,et al. jInv-a Flexible Julia Package for PDE Parameter Estimation , 2016, SIAM J. Sci. Comput..
[20] Eldad Haber,et al. Computational Methods in Geophysical Electromagnetics , 2014, Mathematics in Industry.
[21] K. Chaloner,et al. Bayesian Experimental Design: A Review , 1995 .
[22] B. F. Logan,et al. The Fourier reconstruction of a head section , 1974 .
[23] Georg Stadler,et al. A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..
[24] Anil K. Jain. Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.
[25] E. Haber,et al. Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems , 2010 .
[26] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[27] Jiang Hsieh,et al. Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Fourth Edition , 2022 .
[28] Eldad Haber,et al. Experimental Design for Biological Systems , 2012, SIAM J. Control. Optim..
[29] Andrej Pázman,et al. Foundations of Optimum Experimental Design , 1986 .
[30] F. Pukelsheim. Optimal Design of Experiments , 1993 .
[31] Alexander Shapiro,et al. Lectures on Stochastic Programming: Modeling and Theory , 2009 .
[32] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[33] Samuel Kotz,et al. Discrete Distributions: Distributions in Statistics , 1971 .
[34] E. Haber,et al. Optimal design of simultaneous source encoding , 2015 .
[35] Y. Rubin,et al. Bayesian geostatistical design: Task‐driven optimal site investigation when the geostatistical model is uncertain , 2010 .