Learning Deep Multi-Level Similarity for Thermal Infrared Object Tracking

Existing deep Thermal InfraRed (TIR) trackers only use semantic features to describe the TIR object, which lack the sufficient discriminative capacity for handling distractors. This becomes worse when the feature extraction network is only trained on RGB this http URL address this issue, we propose a multi-level similarity model under a Siamese framework for robust TIR object tracking. Specifically, we compute different pattern similarities on two convolutional layers using the proposed multi-level similarity network. One of them focuses on the global semantic similarity and the other computes the local structural similarity of the TIR object. These two similarities complement each other and hence enhance the discriminative capacity of the network for handling distractors. In addition, we design a simple while effective relative entropy based ensemble subnetwork to integrate the semantic and structural similarities. This subnetwork can adaptive learn the weights of the semantic and structural similarities at the training stage. To further enhance the discriminative capacity of the tracker, we construct the first large scale TIR video sequence dataset for training the proposed model. The proposed TIR dataset not only benefits the training for TIR tracking but also can be applied to numerous TIR vision tasks. Extensive experimental results on the VOT-TIR2015 and VOT-TIR2017 benchmarks demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.

[1]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Min Li,et al.  Infrared Target Tracking Based on Robust Low-Rank Sparse Learning , 2016, IEEE Geoscience and Remote Sensing Letters.

[3]  Michael Felsberg,et al.  ATOM: Accurate Tracking by Overlap Maximization , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Fei Wang,et al.  Large Margin Structured Convolution Operator for Thermal Infrared Object Tracking , 2018, 2018 24th International Conference on Pattern Recognition (ICPR).

[5]  Xuelong Li,et al.  A Biologically Inspired Appearance Model for Robust Visual Tracking , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[8]  James W. Davis,et al.  Background-subtraction using contour-based fusion of thermal and visible imagery , 2007, Comput. Vis. Image Underst..

[9]  Wei Wu,et al.  Distractor-aware Siamese Networks for Visual Object Tracking , 2018, ECCV.

[10]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[11]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[12]  Song Wang,et al.  Learning Dynamic Siamese Network for Visual Object Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[13]  Ying Li,et al.  Real-time infrared target tracking based on ℓ1 minimization and compressive features. , 2014, Applied optics.

[14]  Seong Tae Jhang,et al.  Infrared Target Tracking Using Multi-Feature Joint Sparse Representation , 2016, RACS.

[15]  Qingming Huang,et al.  Hedged Deep Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Michael Felsberg,et al.  The Sixth Visual Object Tracking VOT2018 Challenge Results , 2018, ECCV Workshops.

[17]  Chun Yuan,et al.  Learning attentional recurrent neural network for visual tracking , 2017, 2017 IEEE International Conference on Multimedia and Expo (ICME).

[18]  Huseyin Ozkan,et al.  Comparison of infrared and visible imagery for object tracking: Toward trackers with superior IR performance , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[19]  Ling Shao,et al.  Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[20]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[21]  Qingshan Liu,et al.  Visual tracking using spatio-temporally nonlocally regularized correlation filter , 2018, Pattern Recognit..

[22]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[24]  Fahad Shahbaz Khan,et al.  Synthetic Data Generation for End-to-End Thermal Infrared Tracking , 2018, IEEE Transactions on Image Processing.

[25]  Wenbing Tao,et al.  Learning Linear Regression via Single-Convolutional Layer for Visual Object Tracking , 2019, IEEE Transactions on Multimedia.

[26]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[27]  Yuan Yan Tang,et al.  A Hybrid of Local and Global Saliencies for Detecting Image Salient Region and Appearance , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[28]  Margrit Betke,et al.  A Thermal Infrared Video Benchmark for Visual Analysis , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[29]  L. Gool,et al.  Learning Discriminative Model Prediction for Tracking , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[30]  Pong C. Yuen,et al.  Robust Visual Tracking via Basis Matching , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[31]  W DavisJames,et al.  Background-subtraction using contour-based fusion of thermal and visible imagery , 2007 .

[32]  Xiaogang Jin,et al.  Quadruplet Network With One-Shot Learning for Fast Visual Object Tracking , 2017, IEEE Transactions on Image Processing.

[33]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[34]  Wenguan Wang,et al.  Occlusion-Aware Real-Time Object Tracking , 2017, IEEE Transactions on Multimedia.

[35]  Zhenyu He,et al.  Target-Aware Deep Tracking , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Zhenyu He,et al.  Connected Component Model for Multi-Object Tracking , 2016, IEEE Transactions on Image Processing.

[37]  Ling Shao,et al.  Robust Object Tracking Using Manifold Regularized Convolutional Neural Networks , 2019, IEEE Transactions on Multimedia.

[38]  Qiang Wang,et al.  Do not Lose the Details: Reinforced Representation Learning for High Performance Visual Tracking , 2018, IJCAI.

[39]  Jianbing Shen,et al.  Local Semantic Siamese Networks for Fast Tracking , 2019, IEEE Transactions on Image Processing.

[40]  Zhenyu He,et al.  The Thermal Infrared Visual Object Tracking VOT-TIR2016 Challenge Results , 2016, ECCV Workshops.

[41]  Qingshan Liu,et al.  Parallel Attentive Correlation Tracking , 2019, IEEE Transactions on Image Processing.

[42]  Zhenyu He,et al.  Deep convolutional neural networks for thermal infrared object tracking , 2017, Knowl. Based Syst..

[43]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[44]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Roland Siegwart,et al.  People detection and tracking from aerial thermal views , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[46]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[47]  Xiao Ma,et al.  Visual object tracking via coefficients constrained exclusive group LASSO , 2018, Machine Vision and Applications.

[48]  Wangmeng Zuo,et al.  Attention-guided CNN for image denoising , 2020, Neural Networks.

[49]  Bohyung Han,et al.  Modeling and Propagating CNNs in a Tree Structure for Visual Tracking , 2016, ArXiv.

[50]  Huchuan Lu,et al.  ‘Skimming-Perusal’ Tracking: A Framework for Real-Time and Robust Long-Term Tracking , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[51]  Qingshan Liu,et al.  Robust Visual Tracking via Convolutional Networks Without Training , 2015, IEEE Transactions on Image Processing.

[52]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[53]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[54]  Michael Felsberg,et al.  A thermal Object Tracking benchmark , 2015, 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[55]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Wei Wu,et al.  High Performance Visual Tracking with Siamese Region Proposal Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[57]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[58]  Ling Shao,et al.  Robust and Long-Term Object Tracking With an Application to Vehicles , 2018, IEEE Transactions on Intelligent Transportation Systems.

[59]  Jin Tang,et al.  RGB-T Object Tracking: Benchmark and Baseline , 2018, Pattern Recognit..

[60]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[61]  Rynson W. H. Lau,et al.  CREST: Convolutional Residual Learning for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[62]  Zhenyu He,et al.  PTB-TIR: A Thermal Infrared Pedestrian Tracking Benchmark , 2018, IEEE Transactions on Multimedia.

[63]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Zhenyu He,et al.  Robust Object Tracking via Key Patch Sparse Representation , 2017, IEEE Transactions on Cybernetics.

[65]  Qifeng Yu,et al.  Dense structural learning for infrared object tracking at 200+ Frames per Second , 2017, Pattern Recognit. Lett..

[66]  Genshe Chen,et al.  Infrared target tracking using multiple instance learning with adaptive motion prediction and spatially template weighting , 2013 .

[67]  Ruiming Liu,et al.  Infrared target tracking in multiple feature pseudo-color image with kernel density estimation , 2012 .

[68]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[69]  Feng Li,et al.  Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[70]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[71]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[72]  Luca Bertinetto,et al.  End-to-End Representation Learning for Correlation Filter Based Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[74]  Thomas B. Moeslund,et al.  Thermal cameras and applications: a survey , 2013, Machine Vision and Applications.

[75]  Ling Shao,et al.  Dynamical Hyperparameter Optimization via Deep Reinforcement Learning in Tracking , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  Xuelong Li,et al.  Robust Visual Tracking Using Structurally Random Projection and Weighted Least Squares , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[77]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[78]  Steven C. H. Hoi,et al.  Salient Object Detection With Pyramid Attention and Salient Edges , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[79]  Ming Tang,et al.  Multi-kernel Correlation Filter for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[80]  Junliang Xing,et al.  Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[81]  Yujie He,et al.  Infrared target tracking via weighted correlation filter , 2015 .

[82]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[83]  Jitendra Malik,et al.  Finding action tubes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[84]  Xiaogang Wang,et al.  STCT: Sequentially Training Convolutional Networks for Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[85]  Bohyung Han,et al.  BranchOut: Regularization for Online Ensemble Tracking with Convolutional Neural Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[86]  A. Aydin Alatan,et al.  Evaluation of Feature Channels for Correlation-Filter-Based Visual Object Tracking in Infrared Spectrum , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[87]  Wei Liu,et al.  Unsupervised Deep Tracking , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[88]  Rynson W. H. Lau,et al.  VITAL: VIsual Tracking via Adversarial Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[89]  Chong Luo,et al.  A Twofold Siamese Network for Real-Time Object Tracking , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[90]  Lunke Fei,et al.  Robust Sparse Linear Discriminant Analysis , 2019, IEEE Transactions on Circuits and Systems for Video Technology.

[91]  Huchuan Lu,et al.  Structured Siamese Network for Real-Time Visual Tracking , 2018, ECCV.

[92]  Zhenyu He,et al.  Hierarchical spatial-aware Siamese network for thermal infrared object tracking , 2017, Knowl. Based Syst..

[93]  Wei Wu,et al.  End-to-End Flow Correlation Tracking with Spatial-Temporal Attention , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[94]  Jianbing Shen,et al.  Triplet Loss in Siamese Network for Object Tracking , 2018, ECCV.

[95]  Ales Leonardis,et al.  Is my new tracker really better than yours? , 2014, IEEE Winter Conference on Applications of Computer Vision.

[96]  Chunwei Tian,et al.  Image denoising using deep CNN with batch renormalization , 2020, Neural Networks.

[97]  C S Asha,et al.  Robust infrared target tracking using discriminative and generative approaches , 2017 .

[98]  Jianbing Shen,et al.  Fast Online Tracking With Detection Refinement , 2018, IEEE Transactions on Intelligent Transportation Systems.

[99]  Jiri Matas,et al.  A Novel Performance Evaluation Methodology for Single-Target Trackers , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[100]  Zhenyu He,et al.  A multi-view model for visual tracking via correlation filters , 2016, Knowl. Based Syst..

[101]  Ling Shao,et al.  Visual Object Tracking by Hierarchical Attention Siamese Network , 2020, IEEE Transactions on Cybernetics.

[102]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[103]  Michael Felsberg,et al.  The Visual Object Tracking VOT2017 Challenge Results , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[104]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[105]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.